foxes.core.data_calc_model.DataCalcModel¶
- class foxes.core.data_calc_model.DataCalcModel[source]¶
Bases:
Model
Abstract base class for models with that run calculation on xarray Dataset data.
The calculations are run via xarray’s apply_ufunc function, i.e., they run in parallel depending on the dask settings.
For each individual data chunk the calculate function is called.
- __init__()¶
Methods
__init__
()calculate
(algo, *data, **parameters)"
finalize
(algo[, verbosity])Finalizes the model.
get_data
(variable, data[, st_sel, upcast, ...])Getter for a data entry in either the given data source, or the model object.
initialize
(algo[, verbosity])Initializes the model.
run_calculation
(algo, *data, out_vars, ...)Starts the model calculation in parallel, via xarray's apply_ufunc.
var
(v)Creates a model specific variable name.
Attributes
Initialization flag.
Unique id based on the model type.
- __init__()¶
- abstract calculate(algo, *data, **parameters)[source]¶
” The main model calculation.
This function is executed on a single chunk of data, all computations should be based on numpy arrays.
- finalize(algo, verbosity=0)¶
Finalizes the model.
- Parameters:
algo (foxes.core.Algorithm) – The calculation algorithm
verbosity (int) – The verbosity level, 0 = silent
- get_data(variable, data, st_sel=None, upcast=None, data_prio=False, accept_none=False)¶
Getter for a data entry in either the given data source, or the model object.
- Parameters:
variable (str) – The variable, serves as data key
data (dict) – The data source
st_sel (numpy.ndarray of bool, optional) – If given, get the specified state-turbine subset
upcast (str, optional) – Either ‘farm’ or ‘points’, broadcasts potential scalar data to numpy.ndarray with dimensions (n_states, n_turbines) or (n_states, n_points), respectively
data_prio (bool) – First search the data source, then the object
accept_none (bool) – Do not throw an error if data entry is None or np.nan
- initialize(algo, verbosity=0)¶
Initializes the model.
This includes loading all required data from files. The model should return all array type data as part of the idata return dictionary (and not store it under self, for memory reasons). This data will then be chunked and provided as part of the mdata object during calculations.
- Parameters:
algo (foxes.core.Algorithm) – The calculation algorithm
verbosity (int) – The verbosity level, 0 = silent
- Returns:
idata – The dict has exactly two entries: data_vars, a dict with entries name_str -> (dim_tuple, data_ndarray); and coords, a dict with entries dim_name_str -> dim_array
- Return type:
- property initialized¶
Initialization flag.
- Returns:
True if the model has been initialized.
- Return type:
- property model_id¶
Unique id based on the model type.
- Returns:
Unique id of the model object
- Return type:
- run_calculation(algo, *data, out_vars, loop_dims, out_core_vars, **calc_pars)[source]¶
Starts the model calculation in parallel, via xarray’s apply_ufunc.
Typically this function is called by algorithms.
- Parameters:
algo (foxes.core.Algorithm) – The calculation algorithm
*data (tuple of xarray.Dataset) – The input data
loop_dims (array_like of str) – List of the loop dimensions during xarray’s apply_ufunc calculations
out_core_vars (list of str) – The core dimensions of the output data, use FV.VARS for variables dimension (required)
**calc_pars (dict, optional) – Additional arguments for the calculate function
- Returns:
results – The calculation results
- Return type:
xarray.Dataset