foxes.core.wake_superposition.WakeSuperposition¶
- class foxes.core.wake_superposition.WakeSuperposition[source]¶
Bases:
Model
Abstract base class for wake superposition models.
Note that it is a matter of the wake model if superposition models are used, or if the wake model computes the total wake result by other means.
- __init__()¶
Methods
__init__
()calc_final_wake_delta
(algo, mdata, fdata, ...)Calculate the final wake delta after adding all contributions.
calc_wakes_plus_wake
(algo, mdata, fdata, ...)Add a wake delta to previous wake deltas.
finalize
(algo[, verbosity])Finalizes the model.
get_data
(variable, data[, st_sel, upcast, ...])Getter for a data entry in either the given data source, or the model object.
initialize
(algo[, verbosity])Initializes the model.
var
(v)Creates a model specific variable name.
Attributes
Initialization flag.
Unique id based on the model type.
- __init__()¶
- abstract calc_final_wake_delta(algo, mdata, fdata, variable, amb_results, wake_delta)[source]¶
Calculate the final wake delta after adding all contributions.
- Parameters:
algo (foxes.core.Algorithm) – The calculation algorithm
mdata (foxes.core.Data) – The model data
fdata (foxes.core.Data) – The farm data
variable (str) – The variable name for which the wake deltas applies
amb_results (numpy.ndarray) – The ambient results, shape: (n_states, n_points)
wake_delta (numpy.ndarray) – The wake deltas, shape: (n_states, n_points)
- Returns:
final_wake_delta – The final wake delta, which will be added to the ambient results by simple plus operation. Shape: (n_states, n_points)
- Return type:
- abstract calc_wakes_plus_wake(algo, mdata, fdata, states_source_turbine, sel_sp, variable, wake_delta, wake_model_result)[source]¶
Add a wake delta to previous wake deltas.
- Parameters:
algo (foxes.core.Algorithm) – The calculation algorithm
mdata (foxes.core.Data) – The model data
fdata (foxes.core.Data) – The farm data
states_source_turbine (numpy.ndarray) – For each state, one turbine index for the wake causing turbine. Shape: (n_states,)
sel_sp (numpy.ndarray of bool) – The selection of points, shape: (n_states, n_points)
variable (str) – The variable name for which the wake deltas applies
wake_delta (numpy.ndarray) – The original wake deltas, shape: (n_states, n_points)
wake_model_result (numpy.ndarray) – The new wake deltas of the selected points, shape: (n_sel_sp,)
- Returns:
wdelta – The updated wake deltas, shape: (n_states, n_points)
- Return type:
- finalize(algo, verbosity=0)¶
Finalizes the model.
- Parameters:
algo (foxes.core.Algorithm) – The calculation algorithm
verbosity (int) – The verbosity level, 0 = silent
- get_data(variable, data, st_sel=None, upcast=None, data_prio=False, accept_none=False)¶
Getter for a data entry in either the given data source, or the model object.
- Parameters:
variable (str) – The variable, serves as data key
data (dict) – The data source
st_sel (numpy.ndarray of bool, optional) – If given, get the specified state-turbine subset
upcast (str, optional) – Either ‘farm’ or ‘points’, broadcasts potential scalar data to numpy.ndarray with dimensions (n_states, n_turbines) or (n_states, n_points), respectively
data_prio (bool) – First search the data source, then the object
accept_none (bool) – Do not throw an error if data entry is None or np.nan
- initialize(algo, verbosity=0)¶
Initializes the model.
This includes loading all required data from files. The model should return all array type data as part of the idata return dictionary (and not store it under self, for memory reasons). This data will then be chunked and provided as part of the mdata object during calculations.
- Parameters:
algo (foxes.core.Algorithm) – The calculation algorithm
verbosity (int) – The verbosity level, 0 = silent
- Returns:
idata – The dict has exactly two entries: data_vars, a dict with entries name_str -> (dim_tuple, data_ndarray); and coords, a dict with entries dim_name_str -> dim_array
- Return type:
- property initialized¶
Initialization flag.
- Returns:
True if the model has been initialized.
- Return type:
- property model_id¶
Unique id based on the model type.
- Returns:
Unique id of the model object
- Return type: