Source code for iwopy.core.function_subset

import numpy as np

from .function import OptFunction


[docs] class OptFunctionSubset(OptFunction): """ A function composed of a subset of a function's components. Attributes ---------- func_org: iwopy.OptFunction The original function subset: list of int The component choice :group: core """
[docs] def __init__(self, function, subset, name=None): """ Constructor Parameters ---------- function: iwopy.OptFunction The original function subset: list of int The component choice name: str, optional The function name """ if name is None: name = f"{function.name}[" + ",".join([str(i) for i in subset]) + "]" super().__init__(function.problem, name) self.func_org = function self.subset = subset
[docs] def initialize(self, verbosity=0): """ Initialize the object. Parameters ---------- verbosity: int The verbosity level, 0 = silent """ f = self.func_org if not f.initialized: f.initialize(verbosity) self._cnames = [f._cnames[i] for i in self.subset] self._vdepsi = f.vardeps_int()[self.subset] self._vdepsf = f.vardeps_float()[self.subset] self._vnamesi = [f._vnamesi[i] for i in np.unique(self._vdepsi)] self._vnamesf = [f._vnamesf[i] for i in np.unique(self._vdepsf)] super().initialize(verbosity)
[docs] def vardeps_int(self): """ Gets the dependencies of all components on the function int variables Returns ------- deps: numpy.ndarray of bool The dependencies of components on function variables, shape: (n_components, n_vars_int) """ return self._vdepsi
[docs] def vardeps_float(self): """ Gets the dependencies of all components on the function float variables Returns ------- deps: numpy.ndarray of bool The dependencies of components on function variables, shape: (n_components, n_vars_float) """ return self._vdepsf
[docs] def n_components(self): """ Returns the number of components of the function. Returns ------- int: The number of components. """ return len(self.subset)
[docs] def calc_individual(self, vars_int, vars_float, problem_results, components=None): """ Calculate values for a single individual of the underlying problem. Parameters ---------- vars_int: np.array The integer variable values, shape: (n_vars_int,) vars_float: np.array The float variable values, shape: (n_vars_float,) problem_results: Any The results of the variable application to the problem components: list of int, optional The selected components or None for all Returns ------- values: np.array The component values, shape: (n_sel_components,) """ cmpts = ( self.subset if components is None else [self.subset[i] for i in components] ) return self.func_org.calc_individual( vars_int, vars_float, problem_results, cmpts )
[docs] def calc_population(self, vars_int, vars_float, problem_results, components=None): """ Calculate values for all individuals of a population. Parameters ---------- vars_int: np.array The integer variable values, shape: (n_pop, n_vars_int) vars_float: np.array The float variable values, shape: (n_pop, n_vars_float) problem_results: Any The results of the variable application to the problem components: list of int, optional The selected components or None for all Returns ------- values: np.array The component values, shape: (n_pop, n_sel_components,) """ cmpts = ( self.subset if components is None else [self.subset[i] for i in components] ) return self.func_org.calc_population( vars_int, vars_float, problem_results, cmpts )
[docs] def ana_deriv(self, vars_int, vars_float, var, components=None): """ Calculates the analytic derivative, if possible. Use `numpy.nan` if analytic derivatives cannot be calculated. Parameters ---------- vars_int: np.array The integer variable values, shape: (n_vars_int,) vars_float: np.array The float variable values, shape: (n_vars_float,) var: int The index of the differentiation float variable components: list of int The selected components, or None for all Returns ------- deriv: numpy.ndarray The derivative values, shape: (n_sel_components,) """ cmpts = ( self.subset if components is None else [self.subset[i] for i in components] ) return self.func_org.ana_deriv(vars_int, vars_float, var, cmpts)