Source code for iwopy.interfaces.pygmo.problem

import numpy as np

from iwopy.core import SingleObjOptResults, Problem, OptFunctionList, OptFunctionSubset


[docs] class UDP: """ Generic Problem to Pygmo UserDefinedProblem adapter Attributes ---------- problem: iwopy.Problem The problem to optimize n_vars_all: int The sum of int and float variable counts n_fitness: int The sum of objective and constraint counts c_tol: list of float Constraint tolerances values: numpy.ndarray The function values, shape: (n_fitness,) pop: bool Vectorized fitness computation verbosity: int The verbosity level, 0 = silent :group: interfaces.pygmo """
[docs] def __init__( self, problem, pop=False, verbosity=0, ): """ Constructor Parameters ---------- problem: iwopy.Problem The problem to optimize c_tol: float Constraint tolerance pop: bool Vectorized fitness computation verbosity: int The verbosity level, 0 = silent """ self.problem = problem self.n_vars_all = problem.n_vars_float + problem.n_vars_int self.n_fitness = problem.n_objectives + problem.n_constraints self.c_tol = problem.constraints_tol self.pop = pop self.verbosity = verbosity
[docs] def fitness(self, dv): # extract variables: xf = dv[: self.problem.n_vars_float] xi = dv[self.problem.n_vars_float :].astype(np.int32) # apply new variables: values = np.zeros(self.n_fitness, dtype=np.float64) objs, cons = self.problem.evaluate_individual(xi, xf) objs *= np.where(self.problem.maximize_objs, -1.0, 1.0) values[: self.problem.n_objectives] = objs values[self.problem.n_objectives :] = cons return values
[docs] def batch_fitness(self, dvs): # extract variables: n_vf = self.problem.n_vars_float n_vi = self.problem.n_vars_int n_v = n_vi + n_vf n_pop = int(len(dvs) / n_v) dvs = dvs.reshape(n_pop, n_v) xf = dvs[:, :n_vf] xi = dvs[:, n_vf:].astype(np.int32) # apply new variables: values = np.zeros((n_pop, self.n_fitness), dtype=np.float64) objs, cons = self.problem.evaluate_population(xi, xf) objs *= np.where(self.problem.maximize_objs, -1.0, 1.0)[None, :] values[:, : self.problem.n_objectives] = objs values[:, self.problem.n_objectives :] = cons return values.reshape(n_pop * self.n_fitness)
[docs] def has_batch_fitness(self): return self.pop
[docs] def get_bounds(self): lb = np.full(self.n_vars_all, -np.inf) ub = np.full(self.n_vars_all, np.inf) if self.problem.n_vars_float: lb[: self.problem.n_vars_float] = self.problem.min_values_float() ub[: self.problem.n_vars_float] = self.problem.max_values_float() if self.problem.n_vars_int: lbi = lb[self.problem.n_vars_float :] ubi = ub[self.problem.n_vars_float :] lbi[:] = self.problem.min_values_int() ubi[:] = self.problem.max_values_int() lbi[lbi == -Problem.INT_INF] = -np.inf ubi[ubi == Problem.INT_INF] = np.inf return (lb, ub)
[docs] def get_nobj(self): return self.problem.n_objectives
[docs] def get_nec(self): return 0
[docs] def get_nic(self): return self.problem.n_constraints
[docs] def get_nix(self): return self.problem.n_vars_int
[docs] def has_gradient(self): return True
[docs] def gradient(self, x): spars = np.array(self.gradient_sparsity()) cmpnts = np.unique(spars[:, 0]) vrs = np.unique(spars[:, 1]) if len(cmpnts) != self.problem.n_objectives + self.problem.n_constraints: func = OptFunctionList(self.problem, "objs_cons") for f in self.problem.objs.functions: func.append(f) for f in self.problem.cons.functions: func.append(f) func = OptFunctionSubset(func, cmpnts) func.initialize() else: func = None varsf = x[: self.problem.n_vars_float] varsi = x[self.problem.n_vars_float :].astype(np.int32) grad = self.problem.get_gradients( varsi, varsf, vars=vrs, func=func, verbosity=self.verbosity, pop=self.pop, ) return [grad[c, list(vrs).index(v)] for c, v in spars]
[docs] def has_gradient_sparsity(self): return True
[docs] def gradient_sparsity(self): out = [] # add sparsity of objectives: out += np.argwhere(self.problem.objs.vardeps_float()).tolist() if self.problem.n_vars_int: depsi = np.argwhere(self.problem.objs.vardeps_int()) depsi[:, 1] += self.problem.n_vars_float out += depsi.tolist() # add sparsity of constraints: if self.problem.n_constraints: depsf = np.argwhere(self.problem.cons.vardeps_float()) depsf[:, 0] += self.problem.n_objectives out += depsf.tolist() if self.problem.n_vars_int: depsi = np.argwhere(self.problem.cons.vardeps_int()) depsi[:, 0] += self.problem.n_objectives depsi[:, 1] += self.problem.n_vars_float out += depsi.tolist() return sorted(out)
[docs] def has_hessians(self): return False
# def hessians(self, dv):
[docs] def has_hessians_sparsity(self): return False
# def hessians_sparsity(self):
[docs] def has_set_seed(self): return False
# def set_seed(self, s):
[docs] def get_name(self): return self.problem.name
[docs] def get_extra_info(self): return ""
[docs] def finalize(self, pygmo_pop, verbosity=1): """ Finalize the problem. Parameters ---------- pygmo_pop: pygmo.Population The results from the solver verbosity: int The verbosity level, 0 = silent Returns ------- results: iwopy.SingleObjOptResults The optimization results object """ # extract variables: dv = pygmo_pop.champion_x xf = dv[: self.problem.n_vars_float] xi = dv[self.problem.n_vars_float :].astype(np.int32) if verbosity: print() print(pygmo_pop) # apply final variables: res, objs, cons = self.problem.finalize_individual(xi, xf, verbosity) if verbosity: print() suc = np.all(self.problem.check_constraints_individual(cons, verbosity)) if verbosity: print() return SingleObjOptResults(self.problem, suc, xi, xf, objs, cons, res)