Source code for iwopy.interfaces.scipy.optimizer

import numpy as np
from scipy.optimize import minimize

from iwopy.core import Optimizer
from iwopy.core import SingleObjOptResults


[docs] class Optimizer_scipy(Optimizer): """ Interface to the scipy optimizers. Note that these solvers do not support vectorized evaluation. Attributes ---------- scipy_pars: dict Additional parameters for scipy.optimze.minimize() mem_size: int The memory size, number of stored obj, cons evaluations :group: interfaces.scipy """
[docs] def __init__(self, problem, scipy_pars={}, mem_size=100, **kwargs): """ Constructor Parameters ---------- problem: iwopy.Problem The problem to optimize scipy_pars: dict Additional parameters for scipy.optimze.minimize() mem_size: int The memory size, number of stored obj, cons evaluations kwargs: dict, optional Additional parameters for base class """ super().__init__(problem, **kwargs) self.scipy_pars = scipy_pars self.mem_size = mem_size self._mem = None
[docs] def print_info(self): """ Print solver info, called before solving """ super().print_info() if len(self.scipy_pars): print("\nScipy parameters:") print("-----------------") for k, v in self.scipy_pars.items(): if isinstance(v, int) or isinstance(v, float) or isinstance(v, str): print(f" {k}: {v}") print()
[docs] def initialize(self, verbosity=1): """ Initialize the object. Parameters ---------- verbosity: int The verbosity level, 0 = silent """ # Check objectives: if self.problem.n_objectives > 1: raise RuntimeError( "Scipy minimize does not support multi-objective optimization." ) # Define constraints: cons = list() for i in range(self.problem.n_constraints): cons.append({"type": "ineq", "fun": self._constraints, "args": (i,)}) self.scipy_pars["constraints"] = cons if verbosity: print(f"Using optimizer memory, size: {self.mem_size}") self._mem = {} super().initialize(verbosity)
def _get_results(self, x): """ Evaluate obj and cons Parameters ---------- x: numpy array Array containing design variables Returns ------- objs: np.array The objective function values, shape: (n_objectives,) cons: np.array The constraints values, shape: (n_constraints,) prob_results: object The problem results """ key = tuple(x) if key not in self._mem: i0 = self.problem.n_vars_int vars_int = x[:i0].astype(np.int32) vars_float = x[i0:] data = self.problem.evaluate_individual( vars_int, vars_float, ret_prob_res=True ) if len(self._mem) > self.mem_size: key0 = next(iter(self._mem.keys())) del self._mem[key0] self._mem[key] = data return self._mem[key] def _objective(self, x): """ Function which converts array from scipy to readable variables for the problem and evaluates the objective function. Parameters ---------- x: numpy array Array containing design variables Returns ------- float: Current objective function value """ objs, __, __ = self._get_results(x) return objs[0] def _constraints(self, x, ci): """ Function which converts array from scipy to readable variables for the problem and evaluates the constraints. Parameters ---------- x: numpy array Array containing design variables ci: int Index for constraint component Returns ------- float: Value of constraint component """ __, cons, __ = self._get_results(x) return cons[ci]
[docs] def solve(self, verbosity=1): """ Run the optimization solver. Parameters ---------- verbosity: int The verbosity level, 0 = silent Returns ------- results: iwopy.SingleObjOptResults The optimization results object """ # check problem initialization: super().solve() # Initial values: x0 = np.array(self.problem.initial_values_int(), dtype=np.float64) x0 = np.append( x0, np.array(self.problem.initial_values_float(), dtype=np.float64) ) # Find bounds: mini = [ x if x != -self.problem.INT_INF else None for x in self.problem.min_values_int() ] maxi = [ x if x != self.problem.INT_INF else None for x in self.problem.max_values_int() ] bounds = [(mini[i], maxi[i]) for i in range(len(mini))] minf = [x if x != -np.inf else None for x in self.problem.min_values_float()] maxf = [x if x != np.inf else None for x in self.problem.max_values_float()] bounds = [(minf[i], maxf[i]) for i in range(len(minf))] # Run minimization: results = minimize(self._objective, x0, bounds=bounds, **self.scipy_pars) # final evaluation: if results.success: x = results.x i0 = self.problem.n_vars_int vars_int = x[:i0].astype(np.int32) vars_float = x[i0:] prob_res, objs, cons = self.problem.finalize_individual( vars_int, vars_float, verbosity=verbosity ) else: prob_res = None vars_int = None vars_float = None objs = None cons = None return SingleObjOptResults( self.problem, results.success, vars_int, vars_float, objs, cons, prob_res )