Source code for iwopy.utils.discretization

import numpy as np
from scipy.spatial.distance import cdist


[docs] class RegularDiscretizationGrid: """ A lightweight regular grid in n dimensions, without points storage. Attributes ---------- origin: numpy.ndarray The origin point, shape: (n_dims,) deltas: numpy.ndarray The step sizes, shape: (n_dims,) n_steps: numpy.ndarray The number of steps, shape: (n_dims,) interpolation: str The interpolation method: None, nearest, linear tol: numpy.ndarray The tolerances for grid bounds, shape: (n_dims,), or None digits: int The grid point precision :group: utils """ INT_INF = -999999
[docs] def __init__( self, origin, deltas, n_steps, interpolation=None, tol=None, digits=12, ): """ Constructor Parameters ---------- origin: array-like The origin point, len: n_dims deltas: array-like The step sizes, len: n_dims. n_steps: array-like The number of steps, len: n_dims. Use INT_INF for infinite. interpolation: str The interpolation method: None, nearest, linear tol: list of float, optional The tolerances for grid bounds, default is 0, shape: (n_dims,) digits: int The grid point precision """ self.origin = np.array(origin, dtype=np.float64) self.n_steps = np.array(n_steps, dtype=np.int32) self.deltas = np.array(deltas, dtype=np.float64) self.digits = digits self.interpolation = interpolation if tol is not None: self.tol = np.zeros(self.n_dims, dtype=np.float64) self.tol[:] = tol else: self.tol = None self._opts = None
@property def n_points(self): """ The number of points in each dimension Returns ------- numpy.ndarray : The number of points in each dimension, shape: (n_dims,) """ n = self.n_steps + 1 n[n == self.INT_INF + 1] = self.INT_INF return n @property def n_dims(self): """ The number of dimensions Returns ------- int : The number of dimensions """ return len(self.origin) @property def p_min(self): """ The minimal grid point values Returns ------- numpy.ndarray: The minimal grid point values, shape: (n_dims,) """ m = self.origin.copy() m[(self.n_steps == self.INT_INF) & (self.deltas < 0)] = -np.inf return m @property def p_max(self): """ The maximal grid point values Returns ------- numpy.ndarray: The maximal grid point values, shape: (n_dims,) """ m = self.origin + self.n_steps * self.deltas m[(self.n_steps == self.INT_INF) & (self.deltas > 0)] = np.inf return np.round(m, self.digits)
[docs] def print_info(self, spaces=0): """ Prints basic information Parameters ---------- spaces: int The prepending spaces """ s = "" if spaces == 0 else " " * spaces print(f"{s}n_dims :", self.n_dims) print(f"{s}deltas :", self.deltas.tolist()) print(f"{s}n_steps :", self.n_steps) print(f"{s}n_points:", self.n_points) print(f"{s}p_min :", self.p_min) print(f"{s}p_max :", self.p_max)
def _error_info(self, p, for_ocell=False): """ Helper for printing information at interpolation error """ print("GDIM:", self.n_points.tolist()) print("GMIN:", self.p_min.tolist()) print("GMAX:", self.p_max.tolist()) print("GTOL:", self.tol.tolist()) if for_ocell: cmin = self._ocell[:, 0] cmax = self._ocell[:, 1] print("CMIN:", cmin.tolist()) print("CMAX:", cmax.tolist()) print("Q :", p) else: print("P :", p) def _error_infos(self, pts, for_ocell=False): """ Helper for printing information at interpolation error """ print("GDIM:", self.n_points.tolist()) print("GMIN:", self.p_min.tolist()) print("GMAX:", self.p_max.tolist()) print("GTOL:", self.tol.tolist()) if for_ocell: cmin = self._ocell[:, 0] cmax = self._ocell[:, 1] print("CMIN:", cmin.tolist()) print("CMAX:", cmax.tolist()) print("VMIN:", np.min(pts, axis=0).tolist()) print("VMAX:", np.max(pts, axis=0).tolist()) sel = np.any(pts < cmin[None, :], axis=1) if np.any(sel): s = np.argwhere(sel)[0][0] print( f"Found {np.sum(sel)} coords blow lower bounds, e.g. coord {s}: q = {pts[s]}" ) sel = np.any(pts > cmax[None, :], axis=1) if np.any(sel): s = np.argwhere(sel)[0][0] print( f"Found {np.sum(sel)} coords above higher bounds, e.g. coord {s}: q = {pts[s]}" ) else: print("VMIN:", np.min(pts, axis=0)) print("VMAX:", np.max(pts, axis=0)) sel = np.any(pts < self.p_min[None, :], axis=1) if np.any(sel): s = np.argwhere(sel)[0][0] print( f"Found {np.sum(sel)} points blow lower bounds, e.g. point {s}: p = {pts[s]}" ) sel = np.any(pts > self.p_max[None, :], axis=1) if np.any(sel): s = np.argwhere(sel)[0][0] print( f"Found {np.sum(sel)} points above higher bounds, e.g. point {s}: p = {pts[s]}" )
[docs] def is_gridi(self, inds): """ Checks if grid indices are valid Parameters ---------- inds: int The grid point indices, shape: (n_dims,) Returns ------- bool : True if on grid """ sel0 = ~(self.n_steps == self.INT_INF) sel = (inds < 0) | (sel0 & (inds >= self.n_points)) return not np.any(sel)
[docs] def i2gp(self, inds, error=True): """ Translates grid point indices to grid point. Parameters ---------- inds: int The grid point indices, shape: (n_dims,) error: bool Flag for throwing error if off-grid, else return None in that case Returns ------- gp: numpy.ndarray The grid point, shape: (n_dims,) """ if not self.is_gridi(inds): if error: self.print_info() raise ValueError(f"Grind indices {inds} are not on grid") return np.round(self.origin + inds * self.deltas, self.digits)
[docs] def find_grid_inds(self, inds): """ Finds indices that are on grid Parameters ---------- inds: numpy.ndarray The grid point index candidates, shape: (n_inds, n_dims) Returns ------- sel_grid: numpy.ndarray of bool Subset selection of on-grid indices, shape: (n_inds, n_dims) """ sel0 = ~(self.n_steps == self.INT_INF) sel = (inds < 0) | (sel0[None, :] & (inds >= self.n_points[None, :])) return ~sel
[docs] def inds2gpts(self, inds): """ Translates grid point indices to grid points. Parameters ---------- inds: array-like The integer grid point indices, shape: (n_gpts, dims) Returns ------- gpts: numpy.ndarray The grid points, shape: (n_gpts, n_dims) """ selg = np.all(self.find_grid_inds(inds), axis=1) if not np.all(selg): selg = np.where(selg)[0] raise ValueError( f"Found {len(selg)} indices outside grid, e.g. index {selg[0]}: {inds[selg[0]]}" ) o = self.origin[None, :] d = self.deltas[None, :] return np.round(o + inds * d, self.digits)
def _gp2i(self, gp, allow_outer=True, lower_left=False): """ Helper function for indices calculation """ if lower_left: inds = np.round((gp - self.origin) / self.deltas, self.digits).astype( np.int32 ) else: inds = np.round((gp - self.origin) / self.deltas).astype(np.int32) if not allow_outer: sel0 = ~(self.n_steps == self.INT_INF) sel = sel0 & (inds == self.n_points - 1) inds[sel] -= 1 return inds def _gpts2inds(self, gpts, allow_outer=True, lower_left=False): """ Helper function for index calculation """ o = self.origin[None, :] d = self.deltas[None, :] if lower_left: inds = np.round((gpts - o) / d, self.digits).astype(np.int32) else: inds = np.round((gpts - o) / d).astype(np.int32) sel0 = ~(self.n_steps == self.INT_INF) if not allow_outer: sel = sel0[None, :] & (inds == self.n_points[None, :] - 1) inds[sel] -= 1 return inds
[docs] def apply_tol(self, p): """ Get tolerance corrected point Parameters ---------- p: numpy.ndarray The point, shape: (n_dims,) Returns ------- q: numpy.ndarray The corrected point, shape: (n_dims,) """ if self.tol is not None: q = p.copy() dlo = q - self.p_min sel = (dlo < 0.0) & (dlo >= -self.tol) q[sel] = self.p_min[sel] dhi = q - self.p_max sel = (dhi > 0.0) & (dhi <= self.tol) q[sel] = self.p_max[sel] return q return p
[docs] def apply_tols(self, pts): """ Get tolerance corrected points Parameters ---------- pts: numpy.ndarray The points, shape: (n_pts, n_dims) Returns ------- q: numpy.ndarray The corrected points, shape: (n_pts, n_dims) """ if self.tol is not None: qts = pts.copy() dlo = qts - self.p_min[None, :] sel = (dlo < 0.0) & (dlo >= -self.tol[None, :]) if np.any(sel): pmin = np.zeros_like(qts) pmin[:] = self.p_min[None, :] qts[sel] = pmin[sel] dhi = qts - self.p_max[None, :] sel = (dhi > 0.0) & (dhi <= self.tol[None, :]) if np.any(sel): pmax = np.zeros_like(qts) pmax[:] = self.p_max[None, :] qts[sel] = pmax[sel] return qts return pts
[docs] def is_gridpoint(self, p, allow_outer=True, ret_inds=False): """ Checks if a point is on grid. Parameters ---------- p: numpy.ndarray The point, shape: (n_dims,) allow_outer: bool Allow outermost point indices, else reduce those to lower-left cell corner ret_inds: bool Additionally return indices Returns ------- bool : True if on grid inds: numpy.ndarray, optional The grid point indices, shape: (n_dims,) """ p = self.apply_tol(p) inds = self._gp2i(p, allow_outer) if not self.is_gridi(inds): if ret_inds: return False, inds return False p0 = np.round(self.origin + inds * self.deltas, self.digits) if ret_inds: return np.all(p0 == p), inds return np.all(p0 == p)
[docs] def find_gridpoints(self, pts, allow_outer=True, ret_inds=False): """ Finds points that are on grid. Parameters ---------- pts: numpy.ndarray The points, shape: (n_pts, n_dims) allow_outer: bool Allow outermost point indices, else reduce those to lower-left cell corner ret_inds: bool Additionally return indices Returns ------- sel_grid: numpy.ndarray of bool Subset selection of points that are on grid, shape: (n_pts, n_dims) inds: numpy.ndarray, optional The grid point indices, shape: (n_gpts, n_dims) """ pts = self.apply_tols(pts) inds = self._gpts2inds(pts, allow_outer) sel = self.find_grid_inds(inds) if np.any(sel): o = self.origin[None, :] d = self.deltas[None, :] p0 = np.round(o + inds * d, self.digits) sel = sel & (p0 == pts) if ret_inds: return sel, inds[np.all(sel, axis=1)] return sel
[docs] def all_gridpoints(self, pts, allow_outer=True): """ Checks if all points are on grid. Parameters ---------- pts: numpy.ndarray The points space, shape: (n_pts, n_dims) allow_outer: bool Allow outermost point indices, else reduce those to lower-left cell corner Returns ------- bool : True if all points on grid """ selg = self.find_gridpoints(pts, allow_outer) return np.all(selg)
[docs] def in_grid(self, p): """ Checks if a point is located within the grid. Parameters ---------- p: numpy.ndarray The point, shape: (n_dims,) Returns ------- bool : True if within grid """ p = self.apply_tol(p) return np.all((p >= self.p_min) & (p <= self.p_max))
[docs] def find_ingrid(self, pts): """ Finds points that are on grid. Parameters ---------- pts: numpy.ndarray The points, shape: (n_pts, n_dims) Returns ------- sel_grid: numpy.ndarray of bool Subset selection of points that are in grid, shape: (n_pts, n_dims) """ pts = self.apply_tols(pts) return (pts >= self.p_min[None, :]) & (pts <= self.p_max[None, :])
[docs] def gp2i(self, gp, allow_outer=True, error=True): """ Get grid index of a grid point Parameters ---------- gp: numpy.ndarray The point, shape: (n_dims,) allow_outer: bool Allow outermost point indices, else reduce those to lower-left cell corner error: bool Flag for throwing error if off-grid, else return None in that case Returns ------- inds: numpy.ndarray The lower-left grid corner point indices, shape: (n_dims,) """ isgp, inds = self.is_gridpoint(gp, allow_outer, ret_inds=True) if isgp: if error: self._error_info(gp) raise KeyError(f"Point gp = {gp} is not on grid") return None if not self.is_gridi(inds): if error: self._error_info(gp) raise ValueError(f"Point {gp} out of grid") return None return inds
[docs] def gpts2inds(self, gpts, allow_outer=True, error=True): """ Get grid indices of grid points. Parameters ---------- gpts: numpy.ndarray The grid points, shape: (n_gpts, n_dims) allow_outer: bool Allow outermost point indices, else reduce those to lower-left cell corner error: bool Flag for throwing error if off-grid, else return None in that case Returns ------- inds: numpy.ndarray The lower-left grid corner indices, shape: (n_gpts, n_dims) """ selg, inds = self.find_gridpoints(gpts, allow_outer, ret_inds=True) if not np.all(selg): if error: self._error_infos(gpts) sel = np.where(np.any(~selg, axis=1))[0] raise KeyError( f"Found {len(sel)} points not on grid, e.g. point {sel[0]}: {gpts[0]}" ) return None return inds
[docs] def get_corner(self, p, allow_outer=True): """ Get the lower-left grid corner of a point. Parameters ---------- p: numpy.ndarray The point, shape: (n_dims,) allow_outer: bool Allow outermost point indices, else reduce those to lower-left cell corner Returns ------- p0: numpy.ndarray The lower-left grid corner point, shape: (n_dims,) """ p = self.apply_tol(p) if not self.in_grid(p): self.print_info() raise ValueError(f"Point {p} not in grid") inds = self._gp2i(p, allow_outer, lower_left=True) if not self.is_gridi(inds): self.print_info() raise KeyError(f"Grind indices {inds} are not on grid") return np.round(self.origin + inds * self.deltas, self.digits)
[docs] def get_corners(self, pts, allow_outer=True): """ Get the lower-left grid corners of points. Parameters ---------- pts: numpy.ndarray The points space, shape: (n_pts, n_dims) allow_outer: bool Allow outermost point indices, else reduce those to lower-left cell corner Returns ------- p0: numpy.ndarray The lower-left grid corner points, shape: (n_pts, n_dims) """ pts = self.apply_tols(pts) selg = self.find_ingrid(pts) if not np.all(selg): self._error_infos(pts) selg = np.where(np.any(~selg), axis=1)[0] raise ValueError( f"Found {len(selg)} points out of grid, e.g. point {selg[0]}: {pts[selg[0]]}" ) o = self.origin[None, :] d = self.deltas[None, :] inds = self._gpts2inds(pts, allow_outer, lower_left=True) selg = self.find_grid_inds(inds) if not np.all(selg): self._error_infos(pts) selg = np.where(np.any(~selg), axis=1)[0] raise ValueError( f"Found {len(selg)} indices not on grid, e.g. indices {selg[0]}: {inds[selg[0]]}" ) return np.round(o + inds * d, self.digits)
[docs] def get_cell(self, p): """ Get the grid cell that contains a point. Parameters ---------- p: numpy.ndarray The point, shape: (n_dims,) Returns ------- cell: numpy.ndarray The min and max values of each dimension. Shape: (n_dims, 2) """ cell = np.zeros((self.n_dims, 2), dtype=np.float64) cell[:] = self.get_corner(p, allow_outer=False)[:, None] cell[:, 1] += self.deltas return np.round(cell, self.digits)
[docs] def get_cells(self, pts): """ Get the grid cells that contain the given points, one cell per point. Parameters ---------- pts: numpy.ndarray The points, shape: (n_pts, n_dims) Returns ------- cells: numpy.ndarray The min and max values of each dimension. Shape: (n_pts, n_dims, 2) """ n_pts = pts.shape[0] cells = np.zeros((n_pts, self.n_dims, 2), dtype=np.float64) cells[:] = self.get_corners(pts, allow_outer=False)[:, :, None] cells[:, :, 1] += self.deltas[None, :] return np.round(cells, self.digits)
def _get_opts(self): """ Helper function that returns unit origin cell points """ if self._opts is None: ocell = np.zeros((self.n_dims, 2), dtype=np.int8) ocell[:, 1] += 1 self._opts = np.stack(np.meshgrid(*ocell, indexing="ij"), axis=-1) self._opts = self._opts.reshape(2**self.n_dims, self.n_dims) del ocell return self._opts def _interpolate_ocell(self, qts): """ Helper function for interpolation weights in unit hypercube. Classic volume weighting, see e.g. Fig. 2 and Eq. (4) in http://dx.doi.org/10.1088/0004-6256/139/2/342 """ assert ( qts >= 0.0 ).all(), f"Found coordinates below 0: {qts[np.any(qts<0., axis=-1)].tolist()}" assert ( qts <= 1.0 ).all(), f"Found coordinates above 1: {qts[np.any(qts>1., axis=-1)].tolist()}" opts = self._get_opts() return np.prod(1 - np.abs(qts[:, None] - opts[None, :]), axis=-1)
[docs] def interpolation_coeffs_point(self, p): """ Get the interpolation coefficients for a point. Example ------- >>> g = RegularDiscretizationGrid(...) >>> p = ... >>> gpts, c = g.interpolation_coeffs_point(p) >>> ratg = ... calc results at gpts, shape (n_gpts, x) ... >>> ires = np.einsum('gx,g->x', ratg, c) Parameters ---------- p: numpy.ndarray The point, shape: (n_dims,) Returns ------- gpts: numpy.ndarray The grid points relevant for coeffs, shape: (n_gpts, n_dims) coeffs: numpy.ndarray The interpolation coefficients, shape: (n_gpts,) """ p = self.apply_tol(p) cell = self.get_cell(p) p0 = cell[:, 0] if self.interpolation is None: return p0[None, :], np.ones(1, dtype=np.float64) elif self.interpolation == "nearest": gpts = np.stack(np.meshgrid(*cell, indexing="ij"), axis=-1) gpts = np.round(gpts, self.digits).reshape(2**self.n_dims, self.n_dims) dist = np.linalg.norm(gpts - p[None, :], axis=-1) return gpts[None, np.argmin(dist)], np.ones(1, dtype=np.float64) elif self.interpolation == "linear": qts = np.round( (p[None, :] - p0[None, :]) / self.deltas[None, :], self.digits ) try: coeffs = self._interpolate_ocell(qts)[0] except AssertionError as e: self._error_info(p, for_ocell=True) raise e gpts = np.stack(np.meshgrid(*cell, indexing="ij"), axis=-1) gpts = np.round(gpts, self.digits).reshape(2**self.n_dims, self.n_dims) else: raise ValueError( f"Unknown interpolation '{self.interpolation}'. Please choose: snap, nearest, linear" ) sel = np.abs(coeffs) < 1.0e-14 if np.any(sel): gpts = gpts[~sel] coeffs = coeffs[~sel] return gpts, coeffs
[docs] def interpolation_coeffs_points(self, pts, ret_pmap=False): """ Get the interpolation coefficients for a set of points. Example ------- >>> g = RegularDiscretizationGrid(...) >>> pts = ... >>> gpts, c = g.interpolation_coeffs_points(pts) >>> ratg = ... calc results at gpts, shape (n_gpts, x) ... >>> ires = np.einsum('gx,pg->px', ratg, c) Parameters ---------- pts: numpy.ndarray The points, shape: (n_pts, n_dims) ret_pmap: bool Additionally return the map from pts to gpts Returns ------- gpts: numpy.ndarray The grid points relevant for coeffs, shape: (n_gpts, n_dims) coeffs: numpy.ndarray The interpolation coefficients, shape: (n_pts, n_gpts) pmap: numpy.ndarray, optional The map from pts to gpts, shape: (n_pts, n_gp) """ pts = self.apply_tols(pts) n_pts = len(pts) if self.interpolation is None: p0 = self.get_corners(pts, allow_outer=True) coeffs = np.ones((n_pts, 1), dtype=np.float64) gpts = p0[:, None, :] elif self.interpolation == "nearest": p0 = self.get_corners(pts, allow_outer=True) qts = np.round((pts - p0) / self.deltas[None, :], self.digits) opts = self._get_opts() inds = np.argmin(cdist(qts, opts), axis=-1) gpts = np.round( p0 + np.take_along_axis(opts, inds[:, None], axis=0) * self.deltas[None, :], self.digits, )[:, None, :] coeffs = np.ones((n_pts, 1), dtype=np.float64) del qts, opts, inds elif self.interpolation == "linear": p0 = self.get_corners(pts, allow_outer=False) qts = np.round((pts - p0) / self.deltas[None, :], self.digits) try: coeffs = self._interpolate_ocell(qts) # shape: (n_pts, n_gp) except AssertionError as e: self._error_infos(qts, for_ocell=True) raise e opts = self._get_opts() gpts = np.round( p0[:, None] + opts[None, :] * self.deltas[None, :], self.digits ) # shape: (n_pts, n_gp, n_dims) del p0, qts, opts # remove points with zero weights: sel = np.all(np.abs(coeffs) < 1.0e-14, axis=0) if np.any(sel): coeffs = coeffs[:, ~sel] gpts = gpts[:, ~sel] # reorganize data to single grid point array: n_pts, n_gp = coeffs.shape n_apts = n_pts * n_gp gpts, amap = np.unique( gpts.reshape(n_apts, self.n_dims), axis=0, return_inverse=True ) n_gpts = len(gpts) amap = amap.reshape(n_pts, n_gp) temp = coeffs coeffs = np.zeros((n_pts, n_gpts), dtype=np.float64) np.put_along_axis(coeffs, amap, temp, axis=1) if ret_pmap: return gpts, coeffs, amap return gpts, coeffs
[docs] def deriv_coeffs_gridpoints(self, inds, var, order=2, orderb=1): """ Calculates the derivative coefficients at grid points. Parameters ---------- inds: numpy.ndarray The integer grid point indices, shape: (n_inds, n_dims) var: int The dimension representing the variable wrt which to differentiate order: int The finite difference order, 1 = forward, -1 = backward, 2 = centre orderb: int The finite difference order at boundary points Returns ------- gpts: numpy.ndarray The grid points relevant for coeffs, shape: (n_gpts, n_dims) coeffs: numpy.ndarray The gradient coefficients, shape: (n_inds, n_gpts) """ # check indices: if var < 0 or var > self.n_dims: raise ValueError( f"Variable choice '{var}' exceeds dimensions, n_dims = {self.n_dims}" ) ipts = self.inds2gpts(inds) n_inds = len(inds) # find number of finite difference points n_gpts: sel_bleft = inds[:, var] == 0 sel_bright = inds[:, var] == self.n_points[var] - 1 n_gpts = 2 if np.any(sel_bleft | sel_bright): if orderb == 2: n_gpts = 3 s_centre = ~(sel_bleft | sel_bright) else: s_centre = np.s_[:] # initialize output: gpts = np.zeros((n_inds, n_gpts, self.n_dims), dtype=np.float64) coeffs = np.zeros((n_inds, n_gpts), dtype=np.float64) gpts[:] = self.origin[None, None, :] # coeffs for left boundary points: if np.any(sel_bleft): if orderb == 1: gpts[:, 0][sel_bleft] = ipts[sel_bleft] coeffs[:, 0][sel_bleft] = -1.0 gpts[:, 1][sel_bleft] = ipts[sel_bleft] gpts[:, 1, var][sel_bleft] += self.deltas[var] coeffs[:, 1][sel_bleft] = 1.0 elif orderb == 2: gpts[:, 0][sel_bleft] = ipts[sel_bleft] coeffs[:, 0][sel_bleft] = -1.5 gpts[:, 1][sel_bleft] = ipts[sel_bleft] gpts[:, 1, var][sel_bleft] += self.deltas[var] coeffs[:, 1][sel_bleft] = 2.0 gpts[:, 2][sel_bleft] = ipts[sel_bleft] gpts[:, 2, var][sel_bleft] += 2 * self.deltas[var] coeffs[:, 2][sel_bleft] = -0.5 else: raise NotImplementedError( f"Choice 'orderb = {orderb}' is not supported, please choose: 1 or 2" ) # coeffs for right boundary points: if np.any(sel_bright): if orderb == 1: gpts[:, 0][sel_bright] = ipts[sel_bright] coeffs[:, 0][sel_bright] = 1.0 gpts[:, 1][sel_bright] = ipts[sel_bright] gpts[:, 1, var][sel_bright] -= self.deltas[var] coeffs[:, 1][sel_bright] = -1.0 elif orderb == 2: gpts[:, 0][sel_bright] = ipts[sel_bright] coeffs[:, 0][sel_bright] = 1.5 gpts[:, 1][sel_bright] = ipts[sel_bright] gpts[:, 1, var][sel_bright] -= self.deltas[var] coeffs[:, 1][sel_bright] = -2.0 gpts[:, 2][sel_bright] = ipts[sel_bright] gpts[:, 2, var][sel_bright] -= 2 * self.deltas[var] coeffs[:, 2][sel_bright] = 0.5 else: raise NotImplementedError( f"Choice 'orderb = {orderb}' is not supported, please choose: 1 or 2" ) # coeffs for central points: if not np.all(sel_bleft | sel_bright): if order == 1: gpts[:, 0][s_centre] = ipts[s_centre] gpts[:, 0, var][s_centre] += self.deltas[var] coeffs[:, 0][s_centre] = 1.0 gpts[:, 1][s_centre] = ipts[s_centre] coeffs[:, 1][s_centre] = -1.0 elif order == -1: gpts[:, 0][s_centre] = ipts[s_centre] coeffs[:, 0][s_centre] = 1.0 gpts[:, 1][s_centre] = ipts[s_centre] gpts[:, 1, var][s_centre] -= self.deltas[var] coeffs[:, 1][s_centre] = -1.0 elif order == 2: gpts[:, 0][s_centre] = ipts[s_centre] gpts[:, 0, var][s_centre] += self.deltas[var] coeffs[:, 0][s_centre] = 0.5 gpts[:, 1][s_centre] = ipts[s_centre] gpts[:, 1, var][s_centre] -= self.deltas[var] coeffs[:, 1][s_centre] = -0.5 else: raise NotImplementedError( f"Choice 'order = {order}' is not supported, please choose: -1 (backward), 1 (forward), 2 (centre)" ) # reorganize data to single grid point array: n_pts, n_gp = coeffs.shape n_apts = n_pts * n_gp gpts = np.round(gpts, self.digits) gpts, amap = np.unique( gpts.reshape(n_apts, self.n_dims), axis=0, return_inverse=True ) n_gpts = len(gpts) amap = amap.reshape(n_pts, n_gp) temp = coeffs coeffs = np.zeros((n_pts, n_gpts), dtype=np.float64) np.put_along_axis(coeffs, amap, temp, axis=1) return gpts, coeffs / self.deltas[var]
[docs] def deriv_coeffs(self, pts, var, order=2, orderb=1): """ Calculates the derivative coefficients at points. Parameters ---------- pts: numpy.ndarray The evaluation points, shape: (n_pts, n_dims) var: int The dimension representing the variable wrt which to differentiate order: int The finite difference order, 1 = forward, -1 = backward, 2 = centre orderb: int The finite difference order at boundary points Returns ------- gpts: numpy.ndarray The grid points relevant for coeffs, shape: (n_gpts, n_dims) coeffs: numpy.ndarray The gradient coefficients, shape: (n_pts, n_gpts) """ gpts0, coeffs0, pmap = self.interpolation_coeffs_points(pts, ret_pmap=True) inds0 = self.gpts2inds(gpts0, allow_outer=True) gpts, coeffs1 = self.deriv_coeffs_gridpoints(inds0, var, order, orderb) n_pts = len(pts) n_inds0 = len(inds0) pmat = np.zeros((n_pts, n_inds0), dtype=np.int8) np.put_along_axis(pmat, pmap, 1.0, axis=1) coeffs = np.einsum("pi,pi,ig->pg", coeffs0, pmat, coeffs1) return gpts, coeffs
[docs] def grad_coeffs_gridpoints(self, inds, vars, order=2, orderb=1): """ Calculates the gradient coefficients at grid points. Parameters ---------- inds: numpy.ndarray The integer grid point indices, shape: (n_inds, n_dims) vars: list of int, optional The dimensions representing the variables wrt which to differentiate, shape: (n_vars,). Default is all dimensions order: int or list of int The finite difference order, 1 = forward, -1 = backward, 2 = centre orderb: int list of int The finite difference order at boundary points Returns ------- gpts: numpy.ndarray The grid points relevant for coeffs, shape: (n_gpts, n_dims) coeffs: numpy.ndarray The gradient coefficients, shape: (n_inds, n_vars, n_gpts) """ if vars is None: vars = np.arange(self.n_dims) n_vars = len(vars) n_inds = len(inds) gpts = None cfs = None sizes = [] for vi, v in enumerate(vars): o = order if isinstance(order, int) else order[vi] ob = orderb if isinstance(orderb, int) else orderb[vi] hg, hc = self.deriv_coeffs_gridpoints(inds, v, o, ob) if gpts is None: gpts = hg cfs = hc else: gpts = np.append(gpts, hg, axis=0) cfs = np.append(cfs, hc, axis=1) sizes.append(len(hg)) del hg, hc gpts, gmap = np.unique(gpts, axis=0, return_inverse=True) n_gpts = len(gpts) coeffs = np.zeros((n_inds, n_vars, n_gpts), dtype=np.float64) i0 = 0 for vi, s in enumerate(sizes): i1 = i0 + s np.put_along_axis(coeffs[:, vi], gmap[None, i0:i1], cfs[:, i0:i1], axis=1) i0 = i1 return gpts, coeffs
[docs] def grad_coeffs(self, pts, vars, order=2, orderb=1): """ Calculates the gradient coefficients at grid points. Parameters ---------- pts: numpy.ndarray The evaluation points, shape: (n_pts, n_dims) vars: list of int, optional The dimensions representing the variables wrt which to differentiate, shape: (n_vars,). Default is all dimensions order: int list of int The finite difference order, 1 = forward, -1 = backward, 2 = centre orderb: int list of int The finite difference order at boundary points Returns ------- gpts: numpy.ndarray The grid points relevant for coeffs, shape: (n_gpts, n_dims) coeffs: numpy.ndarray The gradient coefficients, shape: (n_pts, n_vars, n_gpts) """ gpts0, coeffs0, pmap = self.interpolation_coeffs_points(pts, ret_pmap=True) inds0 = self.gpts2inds(gpts0, allow_outer=True) gpts, coeffs1 = self.grad_coeffs_gridpoints(inds0, vars, order, orderb) n_pts = len(pts) n_inds0 = len(inds0) pmat = np.zeros((n_pts, n_inds0), dtype=np.int8) np.put_along_axis(pmat, pmap, 1.0, axis=1) coeffs = np.einsum("pi,pi,ivg->pvg", coeffs0, pmat, coeffs1) return gpts, coeffs