Source code for iwopy.wrappers.discretize_reg_grid

import numpy as np

from iwopy.utils import RegularDiscretizationGrid
from .local_fd import LocalFD
from iwopy.core import Memory, ProblemDefaultFunc


[docs] class DiscretizeRegGrid(LocalFD): """ A wrapper that provides finite distance differentiation on a regular grid for selected or all problem float variables. Attributes ---------- grid: iwopy.tools.RegularDiscretizationGrid The discretization grid order: dict Finite difference order. Key: variable name str, value: 1 = forward, -1 = backward, 2 = centre orderb: dict or int Finite difference order of boundary points. Key: variable name str, value: order int :group: wrappers """
[docs] def __init__( self, base_problem, deltas, fd_order=1, fd_bounds_order=1, mem_size=1000, name=None, **dpars, ): """ Constructor Parameters ---------- base_problem: iwopy.Problem The underlying concrete problem deltas: dict The step sizes. Key: variable name str, Value: step size. Will be adjusted to the variable bounds if necessary. fd_order: dict or int Finite difference order. Either a dict with key: variable name str, value: order int, or a global integer order for all variables. 1 = forward, -1 = backward, 2 = centre fd_bounds_order: dict or int Finite difference order of boundary points. Either a dict with key: variable name str, value: order int, or a global integer order for all variables. Default is same as fd_order mem_size: int, optional The memory size, default no memory name: str, optional The problem name dpars: dict, optional Additional parameters for `RegularDiscretizationGrid` """ name = base_problem.name + "_grid" if name is None else name super().__init__(base_problem, deltas, fd_order, fd_bounds_order, name) self.grid = None self._msize = mem_size self._dpars = dpars
[docs] def initialize(self, verbosity=1): """ Initialize the problem. Parameters ---------- verbosity: int The verbosity level, 0 = silent """ super().initialize(verbosity) if verbosity > 1: print(f" Finite difference grid:") origin = [] deltas = [] nsteps = [] vnms = super().var_names_float() vmins = np.full(super().n_vars_float, np.nan, dtype=np.float64) vmins[:] = super().min_values_float() vmaxs = np.full(super().n_vars_float, np.nan, dtype=np.float64) vmaxs[:] = super().max_values_float() for vi in self._vinds: vnam = vnms[vi] vmin = vmins[vi] vmax = vmaxs[vi] d = self._deltas[vnam] if np.isinf(vmin) and np.isinf(vmax): origin.append(0.0) deltas.append(d) nsteps.append(None) elif np.isinf(vmin): origin.append(vmax) deltas.append(d) nsteps.append(None) elif np.isinf(vmax): origin.append(vmin) deltas.append(d) nsteps.append(None) else: origin.append(vmin) nsteps.append(int((vmax - vmin) / d)) deltas.append((vmax - vmin) / nsteps[-1]) self.grid = RegularDiscretizationGrid(origin, deltas, nsteps, **self._dpars) if verbosity > 1: self.grid.print_info(4) print(self._hline) if self._msize is not None: def keyf(varsi, varsf): gpts = np.atleast_2d(varsf[self._vinds]) li = varsi.tolist() if len(varsi) else [] tf = tuple(tuple(v.tolist()) for v in self.grid.gpts2inds(gpts)) return (tuple(li), tf) self.memory = Memory(self._msize, keyf)
def _grad_coeffs(self, varsf, gvars, order, orderb): """ Helper function that provides gradient coeffs """ gpts, coeffs = self.grid.grad_coeffs(varsf[None, :], gvars, order, orderb) return gpts, coeffs[0]
[docs] def apply_individual(self, vars_int, vars_float): """ Apply new variables to the problem. Parameters ---------- vars_int: np.array The integer variable values, shape: (n_vars_int,) vars_float: np.array The float variable values, shape: (n_vars_float,) Returns ------- problem_results: Any The results of the variable application to the problem """ if self.grid.is_gridpoint(vars_float[self._vinds]): return super().apply_individual(vars_int, vars_float) else: raise NotImplementedError( f"Problem '{self.name}' cannot apply non-grid point {vars_float} to problem" )
[docs] def apply_population(self, vars_int, vars_float): """ Apply new variables to the problem, for a whole population. Parameters ---------- vars_int: np.array The integer variable values, shape: (n_pop, n_vars_int) vars_float: np.array The float variable values, shape: (n_pop, n_vars_float) Returns ------- problem_results: Any The results of the variable application to the problem """ if self.grid.all_gridpoints(vars_float[:, self._vinds]): return super().apply_population(vars_int, vars_float) else: raise NotImplemented( f"Problem '{self.name}' cannot apply non-grid points to problem" )
[docs] def evaluate_individual(self, vars_int, vars_float, ret_prob_res=False): """ Evaluate a single individual of the problem. Parameters ---------- vars_int: np.array The integer variable values, shape: (n_vars_int,) vars_float: np.array The float variable values, shape: (n_vars_float,) ret_prob_res: bool Flag for additionally returning of problem results Returns ------- objs: np.array The objective function values, shape: (n_objectives,) con: np.array The constraints values, shape: (n_constraints,) prob_res: object, optional The problem results """ varsf = vars_float[self._vinds] if self.grid.is_gridpoint(varsf): return super().evaluate_individual(vars_int, vars_float, ret_prob_res) else: gpts, coeffs = self.grid.interpolation_coeffs_point(varsf) n_gpts = len(gpts) objs = np.zeros((n_gpts, self.n_objectives), dtype=np.float64) cons = np.zeros((n_gpts, self.n_constraints), dtype=np.float64) res = [None for __ in range(n_gpts)] for gi, gp in enumerate(gpts): varsf = vars_float.copy() varsf[self._vinds] = gp if ret_prob_res: objs[gi], cons[gi], res[gi] = super().evaluate_individual( vars_int, varsf, ret_prob_res ) else: objs[gi], cons[gi] = super().evaluate_individual( vars_int, varsf, ret_prob_res ) if ret_prob_res: return ( np.einsum("go,g->o", objs, coeffs), np.einsum("gc,g->c", cons, coeffs), self.prob_res_einsum_individual(res, coeffs), ) else: return ( np.einsum("go,g->o", objs, coeffs), np.einsum("gc,g->c", cons, coeffs), )
[docs] def evaluate_population(self, vars_int, vars_float, ret_prob_res=False): """ Evaluate all individuals of a population. Parameters ---------- vars_int: np.array The integer variable values, shape: (n_pop, n_vars_int) vars_float: np.array The float variable values, shape: (n_pop, n_vars_float) ret_prob_res: bool Flag for additionally returning of problem results Returns ------- objs: np.array The objective function values, shape: (n_pop, n_objectives) cons: np.array The constraints values, shape: (n_pop, n_constraints) prob_res: object, optional The problem results """ varsf = vars_float[:, self._vinds] # case all points on grid: if self.grid.all_gridpoints(varsf): return super().evaluate_population(vars_int, vars_float, ret_prob_res) # case all vars are grid vars: elif self.n_vars_int == 0 and len(self._vinds) == self.n_vars_float: gpts, coeffs = self.grid.interpolation_coeffs_points(varsf) n_gpts = len(gpts) varsi = np.zeros((n_gpts, self.n_vars_int), dtype=np.int32) varsi[:] = vars_int[0, None, :] varsf = np.zeros((n_gpts, self.n_vars_float), dtype=np.float64) varsf[:] = vars_float[0, None, :] varsf[:, self._vinds] = gpts if ret_prob_res: objs, cons, res = self.evaluate_population(varsi, varsf, ret_prob_res) return ( np.einsum("go,pg->po", objs, coeffs), np.einsum("gc,pg->pc", cons, coeffs), self.prob_res_einsum_population(res, coeffs), ) else: objs, cons = self.evaluate_population(varsi, varsf, ret_prob_res) return ( np.einsum("go,pg->po", objs, coeffs), np.einsum("gc,pg->pc", cons, coeffs), ) # mixed case: else: gpts, coeffs, gmap = self.grid.interpolation_coeffs_points( varsf, ret_pmap=True ) # each pop has n_gp grid points, this yields pop2: n_pop = len(vars_float) n_gp = gmap.shape[1] n_pop2 = n_pop * n_gp n_int = self.n_vars_int n_v = n_int + self.n_vars_float vinds = n_int + np.array(self._vinds) # create variables of pop2: apts = np.zeros((n_pop, n_gp, n_v), dtype=np.float64) apts[:, :, :n_int] = vars_int.astype(np.float64)[:, None, :] apts[:, :, n_int:] = vars_float[:, None, :] apts = apts.reshape(n_pop2, n_v) apts[:, vinds] = np.take_along_axis(gpts, gmap.reshape(n_pop2), axis=0) # the uniques of pop2 form pop3: upts, umap = np.unique(apts, axis=0, return_inverse=True) varsi = upts[:, :n_int].astype(np.int32) varsf = upts[:, n_int:] del apts, upts # calculate results for pop3: if ret_prob_res: objs, cons, res = self.evaluate_population(varsi, varsf, ret_prob_res) else: objs, cons = self.evaluate_population(varsi, varsf, ret_prob_res) del varsi, varsf # reconstruct results for pop2: objs = np.take_along_axis(objs, umap, axis=0) cons = np.take_along_axis(cons, umap, axis=0) # calculate results for pop, by applying coeffs: objs = objs.reshape(n_pop, n_gp, self.n_objectives) cons = cons.reshape(n_pop, n_gp, self.n_objectives) coeffs = np.take_along_axis(coeffs, gmap, axis=1) if ret_prob_res: return ( np.einsum("pgo,pg->po", objs, coeffs), np.einsum("pgc,pg->pc", cons, coeffs), self.prob_res_einsum_population(res, coeffs), ) else: return ( np.einsum("pgo,pg->po", objs, coeffs), np.einsum("pgc,pg->pc", cons, coeffs), )
[docs] def finalize_individual(self, vars_int, vars_float, verbosity=1): """ Finalization, given the champion data. Parameters ---------- vars_int: np.array The optimal integer variable values, shape: (n_vars_int,) vars_float: np.array The optimal float variable values, shape: (n_vars_float,) verbosity: int The verbosity level, 0 = silent Returns ------- problem_results: Any The results of the variable application to the problem objs: np.array The objective function values, shape: (n_objectives,) cons: np.array The constraints values, shape: (n_constraints,) """ if self._msize is not None: self.memory.clear() return self.base_problem.finalize_individual(vars_int, vars_float, verbosity)
[docs] def finalize_population(self, vars_int, vars_float, verbosity=0): """ Finalization, given the final population data. Parameters ---------- vars_int: np.array The integer variable values of the final generation, shape: (n_pop, n_vars_int) vars_float: np.array The float variable values of the final generation, shape: (n_pop, n_vars_float) verbosity: int The verbosity level, 0 = silent Returns ------- problem_results: Any The results of the variable application to the problem objs: np.array The final objective function values, shape: (n_pop, n_components) cons: np.array The final constraint values, shape: (n_pop, n_constraints) """ if self._msize is not None: self.memory.clear() return self.base_problem.finalize_population(vars_int, vars_float, verbosity)