Source code for iwopy.wrappers.local_fd

import numpy as np

from .problem_wrapper import ProblemWrapper
from iwopy.core import ProblemDefaultFunc


[docs] class LocalFD(ProblemWrapper): """ A wrapper that provides finite distance differentiation by local stepwise evaluation. Attributes ---------- order: dict Finite difference order. Key: variable name str, value: 1 = forward, -1 = backward, 2 = centre orderb: dict or int Finite difference order of boundary points. Key: variable name str, value: order int :group: wrappers """
[docs] def __init__( self, base_problem, deltas, fd_order=1, fd_bounds_order=None, name=None, ): """ Constructor Parameters ---------- base_problem: iwopy.Problem The underlying concrete problem deltas: dict The step sizes. Key: variable name str, Value: step size. Will be adjusted to the variable bounds if necessary. fd_order: dict or int Finite difference order. Either a dict with key: variable name str, value: order int, or a global integer order for all variables. 1 = forward, -1 = backward, 2 = centre fd_bounds_order: dict or int Finite difference order of boundary points. Either a dict with key: variable name str, value: order int, or a global integer order for all variables. Default is same as fd_order name: str, optional The problem name """ name = base_problem.name + "_fd" if name is None else name super().__init__(base_problem, name) if isinstance(deltas, float): deltas = {v: deltas for v in base_problem.var_names_float()} self._deltas = deltas if isinstance(fd_order, int): self.order = {v: fd_order for v in deltas.keys()} else: self.order = fd_order for v in deltas.keys(): if v not in self.order: raise KeyError( f"Problem '{self.name}': Missing fd_order entry for variable '{v}'" ) if fd_bounds_order is None: self.orderb = {v: abs(o) for v, o in self.order.items()} elif isinstance(fd_bounds_order, int): self.orderb = {v: fd_bounds_order for v in deltas.keys()} else: self.orderb = fd_bounds_order for v in deltas.keys(): if v not in self.orderb: raise KeyError( f"Problem '{self.name}': Missing fd_bounds_order entry for variable '{v}'" )
[docs] def initialize(self, verbosity=1): """ Initialize the problem. Parameters ---------- verbosity: int The verbosity level, 0 = silent """ super().initialize(verbosity) self._vinds = [] self._order = [] self._orderb = [] self._d = [] vnms = list(super().var_names_float()) for v in self._deltas.keys(): if v not in vnms: raise KeyError( f"Problem '{self.name}': Variable '{v}' given in deltas, but not found in problem float variables {vnms}" ) vi = vnms.index(v) self._vinds.append(vi) self._order.append(self.order[v]) self._orderb.append(self.orderb[v]) self._d.append(self._deltas[v]) self._order = np.array(self._order, dtype=np.int32) self._orderb = np.array(self._orderb, dtype=np.int32) self._d = np.array(self._d, dtype=np.float64) sel = (self._order == -1) | (self._order == 1) | (self._order == 2) if not np.all(sel): raise NotImplementedError( f"Order(s) {list(np.unique(self._order[~sel]))} not implemented." ) sel = (self._orderb == -1) | (self._orderb == 1) | (self._orderb == 2) if not np.all(sel): raise NotImplementedError( f"Boundary order(s) {list(np.unique(self._orderb[~sel]))} not implemented." )
def _grad_coeffs(self, varsf, gvars, order, orderb): """ Helper function that provides gradient coeffs """ # prepare: n_vars = len(gvars) vmin = np.array(self.min_values_float(), dtype=np.float64)[gvars] vmax = np.array(self.max_values_float(), dtype=np.float64)[gvars] x0 = varsf d = self._d[gvars] xplus = np.zeros((self.n_vars_float, self.n_vars_float), dtype=np.float64) np.fill_diagonal(xplus, d) xplus += x0[None, :] xminus = np.zeros((self.n_vars_float, self.n_vars_float), dtype=np.float64) np.fill_diagonal(xminus, -d) xminus += x0[None, :] xminus2 = None xplus2 = None pts = np.zeros((n_vars, 2, self.n_vars_float), dtype=np.float64) cfs = np.zeros((n_vars, n_vars, 2), dtype=np.float64) cf0 = np.zeros(n_vars, dtype=np.float64) # domain, order 1: sel = (order == 1) & (xplus.diagonal() <= vmax) if np.any(sel): pts[sel, 0] = xplus[sel] cfs[sel, sel, 0] = 1 / d[sel] cf0[sel] = -1 / d[sel] # right boundary, order 1: sel = (orderb == 1) & (xplus.diagonal() > vmax) if np.any(sel): pts[sel, 0] = xminus[sel] cfs[sel, sel, 0] = -1 / d[sel] cf0[sel] = 1 / d[sel] # domain, order -1: sel = (order == -1) & (xminus.diagonal() >= vmin) if np.any(sel): pts[sel, 0] = xminus[sel] cfs[sel, sel, 0] = -1 / d[sel] cf0[sel] = 1 / d[sel] # left boundary, order -1: sel = (orderb == -1) & (xminus.diagonal() < vmin) if np.any(sel): pts[sel, 0] = xplus[sel] cfs[sel, sel, 0] = 1 / d[sel] cf0[sel] = -1 / d[sel] # domain, order 2: sel = (order == 2) & (xplus.diagonal() <= vmax) & (xminus.diagonal() >= vmin) if np.any(sel): pts[sel, 0] = xplus[sel] pts[sel, 1] = xminus[sel] cfs[sel, sel, 0] = 0.5 / d[sel] cfs[sel, sel, 1] = -0.5 / d[sel] # right boundary, order 2: sel = (orderb == 2) & (xplus.diagonal() > vmax) if np.any(sel): if xminus2 is None: xminus2 = np.zeros_like(xminus) np.fill_diagonal(xminus2, -2 * d) xminus2 += x0[None, :] pts[sel, 0] = xminus[sel] pts[sel, 1] = xminus2[sel] cf0[sel] = 1.5 / d[sel] cfs[sel, sel, 0] = -2 / d[sel] cfs[sel, sel, 1] = 0.5 / d[sel] # left boundary, order 2: sel = (orderb == 2) & (xminus.diagonal() < vmax) if np.any(sel): if xplus2 is None: xplus2 = np.zeros_like(xplus) np.fill_diagonal(xplus2, 2 * d) xplus2 += x0[None, :] pts[sel, 0] = xplus[sel] pts[sel, 1] = xplus2[sel] cf0[sel] = -1.5 / d[sel] cfs[sel, sel, 0] = 2 / d[sel] cfs[sel, sel, 1] = -0.5 / d[sel] # reduce and reorganize: sel = np.any(np.abs(cfs) > 1e-13, axis=0) pts = pts[sel] cfs = cfs[:, sel] # add centre point: sel = np.abs(cf0) > 1e-13 if np.any(sel): pts = np.append(pts, x0[None, :], axis=0) cfs = np.append(cfs, cf0[:, None], axis=1) return pts, cfs
[docs] def calc_gradients( self, vars_int, vars_float, func, components, ivars, fvars, vrs, pop=False, verbosity=0, ): """ The actual gradient calculation, not to be called directly (call `get_gradients` instead). Can be overloaded in derived classes, the base class only considers analytic derivatives. Parameters ---------- vars_int: np.array The integer variable values, shape: (n_vars_int,) vars_float: np.array The float variable values, shape: (n_vars_float,) func: iwopy.core.OptFunctionList, optional The functions to be differentiated, or None for a list of all objectives and all constraints (in that order) components: list of int, optional The function's component selection, or None for all ivars: list of int The indices of the function int variables in the problem fvars: list of int The indices of the function float variables in the problem vrs: list of int The function float variable indices wrt which the derivatives are to be calculated pop: bool Flag for vectorizing calculations via population verbosity: int The verbosity level, 0 = silent Returns ------- gradients: numpy.ndarray The gradients of the functions, shape: (n_components, n_vrs) """ # get analytic gradient results: gradients = super().calc_gradients( vars_int, vars_float, func, components, ivars, fvars, vrs, verbosity ) # find variables and components of unsolved gradients: gnan = np.isnan(gradients) gvars = np.unique(np.where(np.any(gnan, axis=0))[0]) pvars = np.array(fvars)[gvars] gvars = [vi for vi in pvars if vi in self._vinds] ivars = [self._vinds.index(vi) for vi in gvars] cmpnts = ( np.arange(func.n_components()) if components is None else np.array(components) ) cmptsi = np.unique(np.where(np.any(gnan, axis=1))[0]) fcmpts = cmpnts[cmptsi] fcomps = fcmpts if components is not None else None if not len(gvars) or not len(fcmpts): return gradients del gnan # get gradient eval points and coeffs: varsf = vars_float[gvars] order = self._order[ivars] orderb = self._orderb[ivars] epts, coeffs = self._grad_coeffs(varsf, gvars, order, orderb) # run the calculation: n_pop = len(epts) varsf = np.full((n_pop, self.n_vars_float), np.nan, dtype=np.float64) values = np.full((n_pop, len(cmptsi)), np.nan, dtype=np.float64) varsf[:] = vars_float[None, :] varsf[:, gvars] = epts if pop: varsi = np.zeros((n_pop, self.n_vars_int), dtype=np.int32) if self.n_vars_int: varsi[:] = vars_int[None, :] if isinstance(func, ProblemDefaultFunc): os, cs = self.evaluate_population(varsi, varsf) s = np.s_[:] if components is None else fcmpts values[:] = np.c_[os, cs][:, s] del os, cs, s else: results = self.apply_population(varsi, varsf) values[:] = func.calc_population(varsi, varsf, results, fcomps) del results else: for i, vf in enumerate(varsf): if isinstance(func, ProblemDefaultFunc): os, cs = self.evaluate_individual(vars_int, vf) s = np.s_[:] if components is None else fcmpts values[i] = np.r_[os, cs][s] del os, cs, s else: results = self.apply_individual(vars_int, vf) values[i] = func.calc_individual(vars_int, vf, results, fcomps) del results # recombine results: gradients[:, gvars] = np.einsum("pc,vp->cv", values, coeffs) return gradients