Source code for iwopy.wrappers.problem_wrapper

from iwopy.core.problem import Problem


[docs] class ProblemWrapper(Problem): """ Generic abstract problem wrapper class. Attributes ---------- base_problem: iwopy.Problem The underlying concrete problem :group: wrappers """
[docs] def __init__(self, base_problem, name, **kwargs): """ Constructor Parameters ---------- base_problem: iwopy.Problem The underlying concrete problem name: str The problem name kwargs: dict, optional Additional parameters for the Problem class """ super().__init__(name, **kwargs) self.base_problem = base_problem
def __getattr__(self, name): return super().__getattribute__("base_problem").__getattribute__(name)
[docs] def var_names_int(self): """ The names of integer variables. Returns ------- names: list of str The names of the integer variables """ return self.base_problem.var_names_int()
[docs] def initial_values_int(self): """ The initial values of the integer variables. Returns ------- values: numpy.ndarray Initial int values, shape: (n_vars_int,) """ return self.base_problem.initial_values_int()
[docs] def min_values_int(self): """ The minimal values of the integer variables. Use -self.INT_INF for unbounded. Returns ------- values: numpy.ndarray Minimal int values, shape: (n_vars_int,) """ return self.base_problem.min_values_int()
[docs] def max_values_int(self): """ The maximal values of the integer variables. Use self.INT_INF for unbounded. Returns ------- values: numpy.ndarray Maximal int values, shape: (n_vars_int,) """ return self.base_problem.max_values_int()
[docs] def var_names_float(self): """ The names of float variables. Returns ------- names: list of str The names of the float variables """ return self.base_problem.var_names_float()
[docs] def initial_values_float(self): """ The initial values of the float variables. Returns ------- values: numpy.ndarray Initial float values, shape: (n_vars_float,) """ return self.base_problem.initial_values_float()
[docs] def min_values_float(self): """ The minimal values of the float variables. Use -numpy.inf for unbounded. Returns ------- values: numpy.ndarray Minimal float values, shape: (n_vars_float,) """ return self.base_problem.min_values_float()
[docs] def max_values_float(self): """ The maximal values of the float variables. Use numpy.inf for unbounded. Returns ------- values: numpy.ndarray Maximal float values, shape: (n_vars_float,) """ return self.base_problem.max_values_float()
[docs] def initialize(self, verbosity=0): """ Initialize the problem. Parameters ---------- verbosity: int The verbosity level, 0 = silent """ if not self.base_problem.initialized: self.base_problem.initialize(verbosity) self.objs = self.base_problem.objs self.cons = self.base_problem.cons for f in self.objs.functions: f.problem = self self.objs.problem = self for f in self.cons.functions: f.problem = self self.cons.problem = self super().initialize(verbosity)
[docs] def apply_individual(self, vars_int, vars_float): """ Apply new variables to the problem. Parameters ---------- vars_int: np.array The integer variable values, shape: (n_vars_int,) vars_float: np.array The float variable values, shape: (n_vars_float,) Returns ------- problem_results: Any The results of the variable application to the problem """ return self.base_problem.apply_individual(vars_int, vars_float)
[docs] def apply_population(self, vars_int, vars_float): """ Apply new variables to the problem, for a whole population. Parameters ---------- vars_int: np.array The integer variable values, shape: (n_pop, n_vars_int) vars_float: np.array The float variable values, shape: (n_pop, n_vars_float) Returns ------- problem_results: Any The results of the variable application to the problem """ return self.base_problem.apply_population(vars_int, vars_float)
[docs] def finalize_individual(self, vars_int, vars_float, verbosity=1): """ Finalization, given the champion data. Parameters ---------- vars_int: np.array The optimal integer variable values, shape: (n_vars_int,) vars_float: np.array The optimal float variable values, shape: (n_vars_float,) verbosity: int The verbosity level, 0 = silent Returns ------- problem_results: Any The results of the variable application to the problem objs: np.array The objective function values, shape: (n_objectives,) cons: np.array The constraints values, shape: (n_constraints,) """ return self.base_problem.finalize_individual(vars_int, vars_float, verbosity)
[docs] def finalize_population(self, vars_int, vars_float, verbosity=0): """ Finalization, given the final population data. Parameters ---------- vars_int: np.array The integer variable values of the final generation, shape: (n_pop, n_vars_int) vars_float: np.array The float variable values of the final generation, shape: (n_pop, n_vars_float) verbosity: int The verbosity level, 0 = silent Returns ------- problem_results: Any The results of the variable application to the problem objs: np.array The final objective function values, shape: (n_pop, n_components) cons: np.array The final constraint values, shape: (n_pop, n_constraints) """ return self.base_problem.finalize_population(vars_int, vars_float, verbosity)