- class foxes.core.SingleTurbineWakeModel(foxes.core.WakeModel)[source]
Abstract base class for wake models that represent a single turbine wake
Single turbine wake models depend on superposition models.
Attributes¶
- wind_superposition: str
The wind superposition model name (vector or compenent model), will be looked up in model book
- other_superpositions: dict
The superpositions for other than (ws, wd) variables. Key: variable name str, value: The wake superposition model name, will be looked up in model book
- vec_superp: foxes.core.WindVectorWakeSuperposition or None
The wind vector wake superposition model
- superp: dict
The superposition dict, key: variable name str, value: foxes.core.WakeSuperposition
Public members¶
-
SingleTurbineWakeModel(wind_superposition=
None
, ...)[source] Constructor.
- property has_vector_wind_superp
This model uses a wind vector superposition
- sub_models()[source]
List of all sub-models
-
initialize(algo, verbosity=
0
, force=False
)[source] Initializes the model.
- finalize_wake_deltas(algo, mdata, fdata, tdata, wake_deltas)[source]
Finalize the wake calculation.
- property affects_ws
Flag for wind speed wake models
- property affects_downwind
Flag for downwind or upwind effects on other turbines
- property has_uv
This model uses wind vector data
- abstractmethod new_wake_deltas(algo, mdata, fdata, tdata)[source]
Creates new empty wake delta arrays.
- abstractmethod contribute(algo, mdata, fdata, tdata, ...)[source]
Modifies wake deltas at target points by contributions from the specified wake source turbines.
- classmethod new(wmodel_type, *args, **kwargs)[source]
Run-time wake model factory.
- property model_id
Unique id based on the model type.
- property initialized
Initialization flag.
- property running
Flag for currently running models
-
set_running(algo, data_stash, sel=
None
, isel=None
, verbosity=0
)[source] Sets this model status to running, and moves all large data to stash.
-
unset_running(algo, data_stash, sel=
None
, isel=None
, verbosity=0
)[source] Sets this model status to not running, recovering large data from stash
-
get_data(variable, target, lookup=
'smfp'
, mdata=None
, ...)[source] Getter for a data entry in the model object or provided data sources