foxes.input.states.FieldDataNC(data_source, output_vars, var2ncvar={}, fixed_vars={}, states_coord='Time', x_coord='UTMX', y_coord='UTMY', h_coord='height', load_mode='preload', weight_ncvar=None, time_format='%Y-%m-%d_%H:%M:%S', sel=None, isel=None, interp_nans=False, bounds_extra_space=1000, **interpn_pars)[source]

Constructor.

Parameters

data_source: str or xarray.Dataset

The data or the file search pattern, should end with suffix ‘.nc’. One or many files.

output_vars: list of str

The output variables

var2ncvar: dict, optional

Mapping from variable names to variable names in the nc file

fixed_vars: dict, optional

Uniform values for output variables, instead of reading from data

states_coord: str

The states coordinate name in the data

x_coord: str

The x coordinate name in the data

y_coord: str

The y coordinate name in the data

h_coord: str, optional

The height coordinate name in the data

load_mode: str

The load mode, choices: preload, lazy, fly. preload loads all data during initialization, lazy lazy-loads the data using dask, and fly reads only states index and weights during initialization and then opens the relevant files again within the chunk calculation

weight_ncvar: str, optional

Name of the weight data variable in the nc file(s)

time_format: str

The datetime parsing format string

sel: dict, optional

Subset selection via xr.Dataset.sel()

isel: dict, optional

Subset selection via xr.Dataset.isel()

interp_nans: bool

Linearly interpolate nan values

bounds_extra_space: float or str, optional

The extra space, either float in m, or str for units of D, e.g. ‘2.5D’

interpn_pars: dict, optional

Additional parameters for scipy.interpolate.interpn