Source code for foxes.algorithms.iterative.models.farm_wakes_calc

import numpy as np
from copy import deepcopy

from foxes.core import FarmDataModel, TData
import foxes.constants as FC


[docs] class FarmWakesCalculation(FarmDataModel): """ This model calculates wakes effects on farm data. Attributes ---------- urelax: foxes.algorithms.iterative.models.URelax The under-relaxation model :group: algorithms.iterative.models """
[docs] def __init__(self, urelax=None): """ Constructor. Parameters ---------- urelax: foxes.algorithms.iterative.models.URelax, optional The under-relaxation model """ super().__init__() self.urelax = urelax
[docs] def output_farm_vars(self, algo): """ The variables which are being modified by the model. Parameters ---------- algo: foxes.core.Algorithm The calculation algorithm Returns ------- output_vars: list of str The output variable names """ ovars = algo.rotor_model.output_farm_vars( algo ) + algo.farm_controller.output_farm_vars(algo) return list(dict.fromkeys(ovars))
[docs] def sub_models(self): """ List of all sub-models Returns ------- smdls: list of foxes.core.Model All sub models """ return [] if self.urelax is None else [self.urelax]
[docs] def calculate(self, algo, mdata, fdata): """ The main model calculation. This function is executed on a single chunk of data, all computations should be based on numpy arrays. Parameters ---------- algo: foxes.core.Algorithm The calculation algorithm mdata: foxes.core.Data The model data fdata: foxes.core.Data The farm data Returns ------- results: dict The resulting data, keys: output variable str. Values: numpy.ndarray with shape (n_states, n_turbines) """ # collect ambient rotor results and weights: rotor = algo.rotor_model weights = algo.get_from_chunk_store(FC.ROTOR_WEIGHTS, mdata=mdata) amb_res = algo.get_from_chunk_store(FC.AMB_ROTOR_RES, mdata=mdata) # generate all wake evaluation points # (n_states, n_order, n_rpoints) pwake2tdata = {} for wname, wmodel in algo.wake_models.items(): pwake = algo.partial_wakes[wname] if pwake.name not in pwake2tdata: tpoints, tweights = pwake.get_wake_points(algo, mdata, fdata) pwake2tdata[pwake.name] = TData.from_tpoints(tpoints, tweights) def _get_wdata(tdatap, wdeltas, variables, s): """Helper function for wake data extraction""" tdata = tdatap.get_slice(variables, s) wdelta = {v: d[s] for v, d in wdeltas.items()} return tdata, wdelta wake_res = deepcopy(amb_res) n_turbines = mdata.n_turbines for wname, wmodel in algo.wake_models.items(): pwake = algo.partial_wakes[wname] gmodel = algo.ground_models[wname] tdatap = pwake2tdata[pwake.name] wdeltas = pwake.new_wake_deltas(algo, mdata, fdata, tdatap, wmodel) for oi in range(n_turbines): if oi > 0: tdata, wdelta = _get_wdata( tdatap, wdeltas, [FC.STATE, FC.TARGET], np.s_[:, :oi] ) gmodel.contribute_to_farm_wakes( algo, mdata, fdata, tdata, oi, wdelta, wmodel, pwake ) if oi < n_turbines - 1: tdata, wdelta = _get_wdata( tdatap, wdeltas, [FC.STATE, FC.TARGET], np.s_[:, oi + 1 :] ) gmodel.contribute_to_farm_wakes( algo, mdata, fdata, tdata, oi, wdelta, wmodel, pwake ) for oi in range(n_turbines): wres = gmodel.finalize_farm_wakes( algo, mdata, fdata, tdatap, amb_res, weights, wdeltas, wmodel, oi, pwake, ) for v, d in wres.items(): if v in wake_res: wake_res[v][:, oi] += d del pwake, tdatap, wdeltas rotor.eval_rpoint_results(algo, mdata, fdata, wake_res, weights) res = algo.farm_controller.calculate(algo, mdata, fdata, pre_rotor=False) if self.urelax is not None: res = self.urelax.calculate(algo, mdata, fdata, res) fdata.update(res) return {v: fdata[v] for v in self.output_farm_vars(algo)}