Source code for foxes.engines.numpy

from tqdm import tqdm
from xarray import Dataset
from tqdm import tqdm

from foxes.core import Engine
import foxes.constants as FC

from .pool import _run


[docs] class NumpyEngine(Engine): """ The numpy engine for foxes calculations. :group: engines """
[docs] def map( self, func, inputs, *args, **kwargs, ): """ Runs a function on a list of files Parameters ---------- func: Callable Function to be called on each file, func(input, *args, **kwargs) -> data inputs: array-like The input data list args: tuple, optional Arguments for func kwargs: dict, optional Keyword arguments for func Returns ------- results: list The list of results """ return [func(input, *args, **kwargs) for input in inputs]
[docs] def run_calculation( self, algo, model, model_data=None, farm_data=None, point_data=None, out_vars=[], chunk_store={}, sel=None, isel=None, iterative=False, **calc_pars, ): """ Runs the model calculation Parameters ---------- algo: foxes.core.Algorithm The algorithm object model: foxes.core.DataCalcModel The model that whose calculate function should be run model_data: xarray.Dataset The initial model data farm_data: xarray.Dataset The initial farm data point_data: xarray.Dataset The initial point data out_vars: list of str, optional Names of the output variables chunk_store: foxes.utils.Dict The chunk store sel: dict, optional Selection of coordinate subsets isel: dict, optional Selection of coordinate subsets index values iterative: bool Flag for use within the iterative algorithm calc_pars: dict, optional Additional parameters for the model.calculate() Returns ------- results: xarray.Dataset The model results """ # subset selection: model_data, farm_data, point_data = self.select_subsets( model_data, farm_data, point_data, sel=sel, isel=isel ) # basic checks: super().run_calculation(algo, model, model_data, farm_data, point_data) # prepare: n_states = model_data.sizes[FC.STATE] out_coords = model.output_coords() coords = {} if FC.STATE in out_coords and FC.STATE in model_data.coords: coords[FC.STATE] = model_data[FC.STATE].to_numpy() if farm_data is None: farm_data = Dataset() goal_data = farm_data if point_data is None else point_data # DEBUG objec mem sizes: # from foxes.utils import print_mem # for m in [algo] + model.models: # print_mem(m, pre_str="MULTIP CHECKING LARGE DATA", min_csize=9999) # calculate chunk sizes: n_targets = point_data.sizes[FC.TARGET] if point_data is not None else 0 chunk_sizes_states, chunk_sizes_targets = self.calc_chunk_sizes( n_states, n_targets ) n_chunks_states = len(chunk_sizes_states) n_chunks_targets = len(chunk_sizes_targets) self.print( f"{type(self).__name__}: Selecting n_chunks_states = {n_chunks_states}, n_chunks_targets = {n_chunks_targets}", level=2, ) # prepare and submit chunks: n_chunks_all = n_chunks_states * n_chunks_targets self.print(f"{type(self).__name__}: Looping over {n_chunks_all} chunks") pbar = ( tqdm(total=n_chunks_all) if self.verbosity > 0 and n_chunks_all > 1 else None ) results = {} i0_states = 0 for chunki_states in range(n_chunks_states): i1_states = i0_states + chunk_sizes_states[chunki_states] i0_targets = 0 for chunki_points in range(n_chunks_targets): i1_targets = i0_targets + chunk_sizes_targets[chunki_points] i = chunki_states * n_chunks_targets + chunki_points # get this chunk's data: data = self.get_chunk_input_data( algo=algo, model_data=model_data, farm_data=farm_data, point_data=point_data, states_i0_i1=(i0_states, i1_states), targets_i0_i1=(i0_targets, i1_targets), out_vars=out_vars, ) # submit model calculation: key = (chunki_states, chunki_points) results[key] = _run( algo, model, data, iterative, chunk_store, (i0_states, i0_targets), **calc_pars, ) chunk_store.update(results[key][1]) del data i0_targets = i1_targets if pbar is not None: pbar.update() i0_states = i1_states del calc_pars, farm_data, point_data if pbar is not None: pbar.close() return self.combine_results( algo=algo, results=results, model_data=model_data, out_vars=out_vars, out_coords=out_coords, n_chunks_states=n_chunks_states, n_chunks_targets=n_chunks_targets, goal_data=goal_data, iterative=iterative, )