Source code for foxes.input.states.scan_ws
import numpy as np
from foxes.core import States
import foxes.variables as FV
import foxes.constants as FC
[docs]
class ScanWS(States):
"""
A given list of wind speeds, all other variables are fixed.
Parameters
----------
wd: float
The wind direction
ti: float
The TI value
rho: float
The air density
:group: input.states
"""
[docs]
def __init__(self, ws_list, wd, ti=None, rho=None):
"""
Constructor.
Parameters
----------
ws_list: array_like
The wind speed values
wd: float
The wind direction
ti: float, optional
The TI value
rho: float, optional
The air density
"""
super().__init__()
self._wsl = np.array(ws_list)
self.N = len(ws_list)
self.wd = wd
self.ti = ti
self.rho = rho
[docs]
def load_data(self, algo, verbosity=0):
"""
Load and/or create all model data that is subject to chunking.
Such data should not be stored under self, for memory reasons. The
data returned here will automatically be chunked and then provided
as part of the mdata object during calculations.
Parameters
----------
algo: foxes.core.Algorithm
The calculation algorithm
verbosity: int
The verbosity level, 0 = silent
Returns
-------
idata: dict
The dict has exactly two entries: `data_vars`,
a dict with entries `name_str -> (dim_tuple, data_ndarray)`;
and `coords`, a dict with entries `dim_name_str -> dim_array`
"""
self.WS = self.var(FV.WS)
idata = super().load_data(algo, verbosity)
idata["data_vars"][self.WS] = ((FC.STATE,), self._wsl)
return idata
[docs]
def size(self):
"""
The total number of states.
Returns
-------
int:
The total number of states
"""
return self.N
[docs]
def output_point_vars(self, algo):
"""
The variables which are being modified by the model.
Parameters
----------
algo: foxes.core.Algorithm
The calculation algorithm
Returns
-------
output_vars: list of str
The output variable names
"""
pvars = [FV.WS]
if self.wd is not None:
pvars.append(FV.WD)
if self.ti is not None:
pvars.append(FV.TI)
if self.rho is not None:
pvars.append(FV.RHO)
return pvars
[docs]
def weights(self, algo):
"""
The statistical weights of all states.
Parameters
----------
algo: foxes.core.Algorithm
The calculation algorithm
Returns
-------
weights: numpy.ndarray
The weights, shape: (n_states, n_turbines)
"""
return np.full((self.N, algo.n_turbines), 1.0 / self.N, dtype=FC.DTYPE)
[docs]
def calculate(self, algo, mdata, fdata, tdata):
""" "
The main model calculation.
This function is executed on a single chunk of data,
all computations should be based on numpy arrays.
Parameters
----------
algo: foxes.core.Algorithm
The calculation algorithm
mdata: foxes.core.MData
The model data
fdata: foxes.core.FData
The farm data
tdata: foxes.core.TData
The target point data
Returns
-------
results: dict
The resulting data, keys: output variable str.
Values: numpy.ndarray with shape
(n_states, n_targets, n_tpoints)
"""
tdata[FV.WS] = np.zeros_like(tdata[FC.TARGETS][..., 0])
tdata[FV.WS][:] = mdata[self.WS][:, None, None]
if self.wd is not None:
tdata[FV.WD] = np.full_like(tdata[FV.WS], self.wd)
if self.ti is not None:
tdata[FV.TI] = np.full_like(tdata[FV.WS], self.ti)
if self.rho is not None:
tdata[FV.RHO] = np.full_like(tdata[FV.WS], self.rho)
return {v: tdata[v] for v in self.output_point_vars(algo)}