Source code for foxes.models.farm_models.turbine2farm

import numpy as np

from foxes.core import FarmModel


[docs] class Turbine2FarmModel(FarmModel): """ Wrapper that promotes turbine models into farm models, simply by selecting all turbines. Attributes ---------- turbine_model: foxes.core.TurbineModel The turbine model :group: models.farm_models """
[docs] def __init__(self, turbine_model): """ Constructor. Parameters ---------- turbine_model: foxes.core.TurbineModel The turbine model """ super().__init__() self.turbine_model = turbine_model self.name = turbine_model.name + "_t2f"
[docs] def __repr__(self): return f"{type(self).__name__}({self.turbine_model})"
[docs] def sub_models(self): """ List of all sub-models Returns ------- smdls: list of foxes.core.Model Names of all sub models """ return [self.turbine_model]
[docs] def output_farm_vars(self, algo): """ The variables which are being modified by the model. Parameters ---------- algo: foxes.core.Algorithm The calculation algorithm Returns ------- output_vars: list of str The output variable names """ return self.turbine_model.output_farm_vars(algo)
[docs] def calculate(self, algo, mdata, fdata, **parameters): """ The main model calculation. This function is executed on a single chunk of data, all computations should be based on numpy arrays. Parameters ---------- algo: foxes.core.Algorithm The calculation algorithm mdata: foxes.core.MData The model data fdata: foxes.core.FData The farm data **parameters: dict, optional Init parameters forwarded to the turbine model Returns ------- results: dict The resulting data, keys: output variable str. Values: numpy.ndarray with shape (n_states, n_turbines) """ s = np.ones((algo.n_states, algo.n_turbines), dtype=bool) return self.turbine_model.calculate(algo, mdata, fdata, st_sel=s, **parameters)