Source code for foxes.models.turbine_models.sector_management

import numpy as np
import pandas as pd

from foxes.core import TurbineModel
from foxes.utils import PandasFileHelper
from foxes.config import get_input_path
import foxes.variables as FV
import foxes.constants as FC


[docs] class SectorManagement(TurbineModel): """ Changes variables based on variable range conditions. Attributes ---------- source: str or pandas.DataFrame The file path or data :group: models.turbine_models """
[docs] def __init__( self, data_source, range_vars, target_vars, col_tinds=None, col_tnames=None, colmap={}, var_periods={FV.WD: 360.0, FV.AMB_WD: 360.0}, pd_file_read_pars={}, ): """ Constructor. Parameters ---------- data_source: str or pandas.DataFrame The file path or data range_vars: list of str The variables for which (min, max) ranges are specified in the data target_vars: list of str The variables that change if range variables are within specified ranges col_tinds: str, optional The turbine index column name in the data col_tnames: str, optional The turbine name column name in the data colmap: dict Mapping from expected to existing column names var_periods: dict Periods for periodic variables pd_file_read_pars: dict Parameters for pandas file reading """ super().__init__() self.source = data_source self._col_i = col_tinds self._col_t = col_tnames self._rvars = range_vars self._tvars = target_vars self._colmap = colmap self._perds = var_periods self._rpars = pd_file_read_pars self._rdata = None self._tdata = None self._trbs = None
[docs] def initialize(self, algo, verbosity=0): """ Initializes the model. Parameters ---------- algo: foxes.core.Algorithm The calculation algorithm verbosity: int The verbosity level, 0 = silent """ super().initialize(algo, verbosity) if isinstance(self.source, pd.DataFrame): data = self.source else: fpath = get_input_path(self.source) if verbosity > 0: print(f"{self.name}: Reading file {fpath}") data = PandasFileHelper.read_file(fpath, **self._rpars) if self._trbs is None: if self._col_i is not None and self._col_t is None: data.reset_index(inplace=True) elif self._col_i is None and self._col_t is not None: tnames = algo.farm.turbine_names inds = [tnames.index(name) for name in data[self._col_t]] data[FC.TURBINE] = inds self._col_i = FC.TURBINE else: raise KeyError( f"{self.name}: Please either specify 'col_tinds' or 'col_tnames'" ) self._trbs = data[self._col_i].to_numpy() n_trbs = len(self._trbs) self._rcols = [] for v in self._rvars: col_vmin = f"{v}_min" col_vmin = self._colmap.get(col_vmin, col_vmin) if col_vmin not in data.columns: raise KeyError( f"{self.name}: Missing column '{col_vmin}', maybe add it to 'colmap'?" ) col_vmax = f"{v}_max" col_vmax = self._colmap.get(col_vmax, col_vmax) if col_vmax not in data.columns: raise KeyError( f"{self.name}: Missing column '{col_vmax}', maybe add it to 'colmap'?" ) self._rcols += [col_vmin, col_vmax] self._tcols = [] for v in self._tvars: col = self._colmap.get(v, v) if col not in data.columns: raise KeyError( f"{self.name}: Missing column '{col}', maybe add it to 'colmap'?" ) self._tcols.append(col) n_rvars = len(self._rvars) self._rdata = data[self._rcols].to_numpy().reshape(n_trbs, n_rvars, 2) self._tdata = data[self._tcols].to_numpy() for vi, v in enumerate(self._rvars): if v in self._perds: self._rdata[:, vi] = np.mod(self._rdata[:, vi], self._perds[v])
[docs] def output_farm_vars(self, algo): """ The variables which are being modified by the model. Parameters ---------- algo: foxes.core.Algorithm The calculation algorithm Returns ------- output_vars: list of str The output variable names """ return self._tvars
[docs] def calculate(self, algo, mdata, fdata, st_sel): """ The main model calculation. This function is executed on a single chunk of data, all computations should be based on numpy arrays. Parameters ---------- algo: foxes.core.Algorithm The calculation algorithm mdata: foxes.core.MData The model data fdata: foxes.core.FData The farm data st_sel: slice or numpy.ndarray of bool The state-turbine selection, for shape: (n_states, n_turbines) Returns ------- results: dict The resulting data, keys: output variable str. Values: numpy.ndarray with shape (n_states, n_turbines) """ # prepare: n_trbs = len(self._trbs) if n_trbs == fdata.n_turbines and np.all( self._trbs == np.arange(fdata.n_turbines) ): tsel = np.s_[:] else: tsel = self._trbs # find state-turbine data that matches ranges: rsel = np.ones((fdata.n_states, n_trbs), dtype=bool) for vi, v in enumerate(self._rvars): d = fdata[v][:, tsel] if v in self._perds: d = np.mod(d, self._perds[v]) mi = self._rdata[:, vi, 0] ma = self._rdata[:, vi, 1] sel = ma < mi if np.any(sel): rsel[:, sel] = rsel[:, sel] & ( (d[:, sel] >= mi[sel]) | (d[:, sel] < ma[sel]) ) if np.any(~sel): rsel[:, ~sel] = ( rsel[:, ~sel] & (d[:, ~sel] >= mi[~sel]) & (d[:, ~sel] < ma[~sel]) ) else: rsel = ( rsel & (d >= self._rdata[None, :, vi, 0]) & (d < self._rdata[None, :, vi, 1]) ) # set target data: if np.any(rsel): sel = np.where(rsel) selt = self._trbs[sel[1]] for vi, v in enumerate(self._tvars): fdata[v][sel[0], selt] = self._tdata[None, sel[1], vi] return {v: fdata[v] for v in self._tvars}