Source code for foxes.models.turbine_models.set_farm_vars

import numpy as np

from foxes.core import TurbineModel
from foxes.config import config
import foxes.variables as FV
import foxes.constants as FC


[docs] class SetFarmVars(TurbineModel): """ Set farm data variables to given data. Attributes ---------- vars: list of str The variables to be set once: bool Flag for running only once :group: models.turbine_models """
[docs] def __init__(self, pre_rotor=False, once=False): """ Constructor. Parameters ---------- pre_rotor: bool Flag for running this model before running the rotor model. once: bool Flag for running only once """ super().__init__(pre_rotor=pre_rotor) self.once = once self.reset()
[docs] def add_var(self, var, data): """ Add data for a variable. Parameters ---------- var: str The variable name data: numpy.ndarray The data, shape: (n_states, n_turbines) """ if self.initialized: raise ValueError( f"Model '{self.name}': Cannot add_var after initialization" ) if self.running: raise ValueError(f"Model '{self.name}': Cannot add_var while running") self.vars.append(var) self.__vdata.append(np.asarray(data, dtype=config.dtype_double))
[docs] def reset(self): """ Remove all variables. """ if self.running: raise ValueError(f"Model '{self.name}': Cannot reset while running") self.vars = [] self.__vdata = []
[docs] def initialize(self, algo, verbosity=0, force=False): """ Initializes the model. Parameters ---------- algo: foxes.core.Algorithm The calculation algorithm verbosity: int The verbosity level, 0 = silent force: bool Overwrite existing data """ super().initialize(algo, verbosity, force) self.__once_done = set()
[docs] def output_farm_vars(self, algo): """ The variables which are being modified by the model. Parameters ---------- algo: foxes.core.Algorithm The calculation algorithm Returns ------- output_vars: list of str The output variable names """ return self.vars
[docs] def load_data(self, algo, verbosity=0): """ Load and/or create all model data that is subject to chunking. Such data should not be stored under self, for memory reasons. The data returned here will automatically be chunked and then provided as part of the mdata object during calculations. Parameters ---------- algo: foxes.core.Algorithm The calculation algorithm verbosity: int The verbosity level, 0 = silent Returns ------- idata: dict The dict has exactly two entries: `data_vars`, a dict with entries `name_str -> (dim_tuple, data_ndarray)`; and `coords`, a dict with entries `dim_name_str -> dim_array` """ idata = super().load_data(algo, verbosity) for i, v in enumerate(self.vars): data = np.full( (algo.n_states, algo.n_turbines), np.nan, dtype=config.dtype_double ) vdata = self.__vdata[i] # handle special case of call during vectorized optimization: if ( np.ndim(vdata) and vdata.shape[0] != algo.n_states and hasattr(algo.states, "n_pop") ): n_pop = algo.states.n_pop n_ost = algo.states.states.size() n_trb = algo.n_turbines vdata = np.zeros((n_pop, n_ost, n_trb), dtype=config.dtype_double) vdata[:] = self.__vdata[i][None, :] vdata = vdata.reshape(n_pop * n_ost, n_trb) data[:] = vdata idata["data_vars"][self.var(v)] = ((FC.STATE, FC.TURBINE), data) # special case of turbine positions: if v in [FV.X, FV.Y]: i = [FV.X, FV.Y].index(v) for ti in range(algo.n_turbines): t = algo.farm.turbines[ti] if len(t.xy.shape) == 1: xy = np.zeros((algo.n_states, 2), dtype=config.dtype_double) xy[:] = t.xy[None, :] t.xy = xy t.xy[:, i] = np.where( np.isnan(data[:, ti]), t.xy[:, i], data[:, ti] ) # special case of rotor diameter and hub height: if v in [FV.D, FV.H]: for ti in range(algo.n_turbines): t = algo.farm.turbines[ti] x = np.zeros(algo.n_states, dtype=config.dtype_double) if v == FV.D: x[:] = t.D t.D = x else: x[:] = t.H t.H = x x[:] = np.where(np.isnan(data[:, ti]), x, data[:, ti]) return idata
[docs] def set_running( self, algo, data_stash, sel=None, isel=None, verbosity=0, ): """ Sets this model status to running, and moves all large data to stash. The stashed data will be returned by the unset_running() function after running calculations. Parameters ---------- algo: foxes.core.Algorithm The calculation algorithm data_stash: dict Large data stash, this function adds data here. Key: model name. Value: dict, large model data sel: dict, optional The subset selection dictionary isel: dict, optional The index subset selection dictionary verbosity: int The verbosity level, 0 = silent """ super().set_running(algo, data_stash, sel, isel, verbosity) data_stash[self.name]["vdata"] = self.__vdata del self.__vdata
[docs] def unset_running( self, algo, data_stash, sel=None, isel=None, verbosity=0, ): """ Sets this model status to not running, recovering large data from stash Parameters ---------- algo: foxes.core.Algorithm The calculation algorithm data_stash: dict Large data stash, this function adds data here. Key: model name. Value: dict, large model data sel: dict, optional The subset selection dictionary isel: dict, optional The index subset selection dictionary verbosity: int The verbosity level, 0 = silent """ super().unset_running(algo, data_stash, sel, isel, verbosity) self.__vdata = data_stash[self.name].pop("vdata")
[docs] def calculate(self, algo, mdata, fdata, st_sel): """ The main model calculation. This function is executed on a single chunk of data, all computations should be based on numpy arrays. Parameters ---------- algo: foxes.core.Algorithm The calculation algorithm mdata: foxes.core.MData The model data fdata: foxes.core.FData The farm data st_sel: slice or numpy.ndarray of bool The state-turbine selection, for shape: (n_states, n_turbines) Returns ------- results: dict The resulting data, keys: output variable str. Values: numpy.ndarray with shape (n_states, n_turbines) """ i0 = mdata.states_i0(counter=True) if not self.once or i0 not in self.__once_done: if self.pre_rotor: order = np.s_[:] ssel = np.s_[:] else: order = fdata[FV.ORDER] ssel = fdata[FV.ORDER_SSEL] bsel = np.zeros((fdata.n_states, fdata.n_turbines), dtype=bool) bsel[st_sel] = True for v in self.vars: data = mdata[self.var(v)][ssel, order] hsel = ~np.isnan(data) tsel = bsel & hsel fdata[v][tsel] = data[tsel] self.__once_done.add(i0) return {v: fdata[v] for v in self.vars}