Source code for foxes.models.turbine_models.table_factors

import numpy as np
import pandas as pd
from scipy.interpolate import interpn

from foxes.core import TurbineModel
from foxes.utils import PandasFileHelper
from foxes.config import config, get_input_path


[docs] class TableFactors(TurbineModel): """ Multiplies variables by factors from a two dimensional table. The column names are expected to be numbers that represent the col_var variable. Attributes ---------- data_source: str or pandas.DataFrame Either path to a file or data row_var: str The row-wise variable col_var: str The column-wise variable ovars: list of str The variables onto which the factors are multiplied :group: models.turbine_models """
[docs] def __init__( self, data_source, row_var, col_var, output_vars, pd_file_read_pars={}, **ipars, ): """ Constructor. Parameters ---------- data_source: str or pandas.DataFrame Either path to a file or data row_var: str The row-wise variable col_var: str The column-wise variable output_vars: list of str The variables onto which the factors are multiplied pd_file_read_pars: dict Parameters for pandas file reading ipars: dict, optional Parameters for scipy.interpolate.interpn """ super().__init__() self.data_source = data_source self.row_var = row_var self.col_var = col_var self.ovars = output_vars self._rpars = pd_file_read_pars self._ipars = ipars self._cvals = None self._data = None
[docs] def output_farm_vars(self, algo): """ The variables which are being modified by the model. Parameters ---------- algo: foxes.core.Algorithm The calculation algorithm Returns ------- output_vars: list of str The output variable names """ return self.ovars
[docs] def initialize(self, algo, verbosity=0): """ Initializes the model. Parameters ---------- algo: foxes.core.Algorithm The calculation algorithm verbosity: int The verbosity level, 0 = silent """ super().initialize(algo, verbosity) if isinstance(self.data_source, pd.DataFrame): self._data = self.data_source else: fpath = get_input_path(self.data_source) if verbosity > 0: print(f"{self.name}: Reading file {fpath}") rpars = dict(index_col=0) rpars.update(self._rpars) self._data = PandasFileHelper.read_file(fpath, **rpars) self._rvals = self._data.index.to_numpy(config.dtype_double) self._cvals = self._data.columns.to_numpy(config.dtype_double) self._data = self._data.to_numpy(config.dtype_double)
[docs] def calculate(self, algo, mdata, fdata, st_sel): """ The main model calculation. This function is executed on a single chunk of data, all computations should be based on numpy arrays. Parameters ---------- algo: foxes.core.Algorithm The calculation algorithm mdata: foxes.core.MData The model data fdata: foxes.core.FData The farm data st_sel: slice or numpy.ndarray of bool The state-turbine selection, for shape: (n_states, n_turbines) Returns ------- results: dict The resulting data, keys: output variable str. Values: numpy.ndarray with shape (n_states, n_turbines) """ n_sel = np.sum(st_sel) qts = np.zeros((n_sel, 2), dtype=config.dtype_double) qts[:, 0] = fdata[self.row_var][st_sel] qts[:, 1] = fdata[self.col_var][st_sel] try: factors = interpn( (self._rvals, self._cvals), self._data, qts, **self._ipars ) except ValueError as e: print(f"\nDATA : ({self.row_var}, {self.col_var})") print( f"DATA BOUNDS: ({np.min(self._rvals)}, {np.min(self._cvals)}) -- ({np.max(self._rvals)}, {np.max(self._cvals)})" ) print( f"VALUE BOUNDS: ({np.min(qts[:, 0]):.4f}, {np.min(qts[:, 1]):.4f}) -- ({np.max(qts[:, 0]):.4f}, {np.max(qts[:, 1]):.4f})\n" ) raise e for v in self.output_farm_vars(algo): fdata[v][st_sel] *= factors return {v: fdata[v] for v in self.output_farm_vars(algo)}