Source code for foxes.models.wake_models.dist_sliced

from abc import abstractmethod

from foxes.core import WakeModel


[docs] class DistSlicedWakeModel(WakeModel): """ Abstract base class for wake models for which the x-denpendency can be separated from the yz-dependency. The multi-yz ability is used by the `PartialDistSlicedWake` partial wakes model. Attributes ---------- superpositions: dict The superpositions. Key: variable name str, value: The wake superposition model name, will be looked up in model book superp: dict The superposition dict, key: variable name str, value: `foxes.core.WakeSuperposition` :group: models.wake_models """
[docs] def __init__(self, superpositions): """ Constructor. Parameters ---------- superpositions: dict The superpositions. Key: variable name str, value: The wake superposition model name, will be looked up in model book """ super().__init__() self.superpositions = superpositions
[docs] def sub_models(self): """ List of all sub-models Returns ------- smdls: list of foxes.core.Model Names of all sub models """ return list(self.superp.values())
[docs] def initialize(self, algo, verbosity=0, force=False): """ Initializes the model. Parameters ---------- algo: foxes.core.Algorithm The calculation algorithm verbosity: int The verbosity level, 0 = silent force: bool Overwrite existing data """ self.superp = { v: algo.mbook.wake_superpositions[s] for v, s in self.superpositions.items() } super().initialize(algo, verbosity, force)
[docs] @abstractmethod def calc_wakes_x_yz( self, algo, mdata, fdata, tdata, downwind_index, x, yz, ): """ Calculate wake deltas. Parameters ---------- algo: foxes.core.Algorithm The calculation algorithm mdata: foxes.core.MData The model data fdata: foxes.core.FData The farm data tdata: foxes.core.TData The target point data downwind_index: int The index in the downwind order x: numpy.ndarray The x values, shape: (n_states, n_targets) yz: numpy.ndarray The yz values for each x value, shape: (n_states, n_targets, n_yz_per_target, 2) Returns ------- wdeltas: dict The wake deltas. Key: variable name str, value: numpy.ndarray, shape: (n_st_sel, n_yz_per_target) st_sel: numpy.ndarray of bool The state-target selection, for which the wake is non-zero, shape: (n_states, n_targets) """ pass
[docs] def contribute( self, algo, mdata, fdata, tdata, downwind_index, wake_coos, wake_deltas, ): """ Modifies wake deltas at target points by contributions from the specified wake source turbines. Parameters ---------- algo: foxes.core.Algorithm The calculation algorithm mdata: foxes.core.MData The model data fdata: foxes.core.FData The farm data tdata: foxes.core.TData The target point data downwind_index: int The index of the wake causing turbine in the downwind order wake_coos: numpy.ndarray The wake frame coordinates of the evaluation points, shape: (n_states, n_targets, n_tpoints, 3) wake_deltas: dict The wake deltas. Key: variable name, value: numpy.ndarray with shape (n_states, n_targets, n_tpoints, ...) """ x = wake_coos[:, :, 0, 0] yz = wake_coos[..., 1:3] wdeltas, st_sel = self.calc_wakes_x_yz( algo, mdata, fdata, tdata, downwind_index, x, yz ) for v, hdel in wdeltas.items(): try: superp = self.superp[v] except KeyError: raise KeyError( f"Model '{self.name}': Missing wake superposition entry for variable '{v}', found {sorted(list(self.superp.keys()))}" ) wake_deltas[v] = superp.add_wake( algo, mdata, fdata, tdata, downwind_index, st_sel, v, wake_deltas[v], hdel, )
[docs] def finalize_wake_deltas( self, algo, mdata, fdata, amb_results, wake_deltas, ): """ Finalize the wake calculation. Modifies wake_deltas on the fly. Parameters ---------- algo: foxes.core.Algorithm The calculation algorithm mdata: foxes.core.MData The model data fdata: foxes.core.FData The farm data amb_results: dict The ambient results, key: variable name str, values: numpy.ndarray with shape (n_states, n_targets, n_tpoints) wake_deltas: dict The wake deltas object at the selected target turbines. Key: variable str, value: numpy.ndarray with shape (n_states, n_targets, n_tpoints) """ for v, s in self.superp.items(): wake_deltas[v] = s.calc_final_wake_delta( algo, mdata, fdata, v, amb_results[v], wake_deltas[v] )