Source code for foxes.models.wake_models.induction.self_similar

import numpy as np

from foxes.core import TurbineInductionModel
import foxes.variables as FV
import foxes.constants as FC


[docs] class SelfSimilar(TurbineInductionModel): """ The self-similar induction wake model from Troldborg and Meyer Forsting The individual wake effects are superposed linearly, without invoking a wake superposition model. Notes ----- References: [1] Troldborg, Niels, and Alexander Raul Meyer Forsting. "A simple model of the wind turbine induction zone derived from numerical simulations." Wind Energy 20.12 (2017): 2011-2020. https://onlinelibrary.wiley.com/doi/full/10.1002/we.2137 [2] Forsting, Alexander R. Meyer, et al. "On the accuracy of predicting wind-farm blockage." Renewable Energy (2023). https://www.sciencedirect.com/science/article/pii/S0960148123007620 Attributes ---------- pre_rotor_only: bool Calculate only the pre-rotor region induction: foxes.core.AxialInductionModel or str The induction model :group: models.wake_models.induction """
[docs] def __init__( self, superposition="ws_linear", induction="Madsen", gamma=1.1, pre_rotor_only=False, ): """ Constructor. Parameters ---------- superposition: str The wind speed superposition. induction: foxes.core.AxialInductionModel or str The induction model gamma: float, default=1.1 The parameter that multiplies Ct in the ct2a calculation pre_rotor_only: bool Calculate only the pre-rotor region """ super().__init__() self.induction = induction self.pre_rotor_only = pre_rotor_only self.gamma = gamma self._superp_name = superposition
[docs] def __repr__(self): iname = ( self.induction if isinstance(self.induction, str) else self.induction.name ) return f"{type(self).__name__}({self._superp_name}, induction={iname}, gamma={self.gamma})"
[docs] def sub_models(self): """ List of all sub-models Returns ------- smdls: list of foxes.core.Model All sub models """ return [self._superp, self.induction]
[docs] def initialize(self, algo, verbosity=0, force=False): """ Initializes the model. Parameters ---------- algo: foxes.core.Algorithm The calculation algorithm verbosity: int The verbosity level, 0 = silent force: bool Overwrite existing data """ self._superp = algo.mbook.wake_superpositions[self._superp_name] if isinstance(self.induction, str): self.induction = algo.mbook.axial_induction[self.induction] super().initialize(algo, verbosity, force)
[docs] def new_wake_deltas(self, algo, mdata, fdata, tdata): """ Creates new empty wake delta arrays. Parameters ---------- algo: foxes.core.Algorithm The calculation algorithm mdata: foxes.core.MData The model data fdata: foxes.core.FData The farm data tdata: foxes.core.TData The target point data Returns ------- wake_deltas: dict Key: variable name, value: The zero filled wake deltas, shape: (n_states, n_turbines, n_rpoints, ...) """ return {FV.WS: np.zeros_like(tdata[FC.TARGETS][..., 0])}
def _mu(self, x_R): """Helper function: define mu (eqn 11 from [1])""" return 1 + (x_R / np.sqrt(1 + x_R**2)) def _a0(self, ct, x_R): """Helper function: define a0 with gamma factor, eqn 8 from [2]""" return self.induction.ct2a(self.gamma * ct) def _a(self, ct, x_R): """Helper function: define axial shape function (eqn 11 from [1])""" return self._a0(ct, x_R) * self._mu(x_R) def _r_half(self, x_R): """Helper function: using eqn 13 from [2]""" return np.sqrt(0.587 * (1.32 + x_R**2)) def _rad_fn(self, x_R, r_R, beta=np.sqrt(2), alpha=8 / 9): """Helper function: define radial shape function (eqn 12 from [1])""" return (1 / np.cosh(beta * (r_R) / self._r_half(x_R))) ** alpha # * (x_R < 0)
[docs] def contribute( self, algo, mdata, fdata, tdata, downwind_index, wake_coos, wake_deltas, ): """ Modifies wake deltas at target points by contributions from the specified wake source turbines. Parameters ---------- algo: foxes.core.Algorithm The calculation algorithm mdata: foxes.core.MData The model data fdata: foxes.core.FData The farm data tdata: foxes.core.TData The target point data downwind_index: int The index of the wake causing turbine in the downwind order wake_coos: numpy.ndarray The wake frame coordinates of the evaluation points, shape: (n_states, n_targets, n_tpoints, 3) wake_deltas: dict The wake deltas. Key: variable name, value: numpy.ndarray with shape (n_states, n_targets, n_tpoints, ...) """ # get ct ct = self.get_data( FV.CT, FC.STATE_TARGET_TPOINT, lookup="w", algo=algo, fdata=fdata, tdata=tdata, upcast=True, downwind_index=downwind_index, ) # get R R = 0.5 * self.get_data( FV.D, FC.STATE_TARGET_TPOINT, lookup="w", algo=algo, fdata=fdata, tdata=tdata, upcast=False, downwind_index=downwind_index, ) # get x, r and R etc. Rounding for safe x < 0 condition below x_R = np.round(wake_coos[..., 0] / R, 12) r_R = np.linalg.norm(wake_coos[..., 1:3], axis=-1) / R # select values sp_sel = (ct > 1e-8) & (x_R <= 0) # upstream if np.any(sp_sel): # velocity eqn 10 from [1] xr = x_R[sp_sel] blockage = self._a(ct[sp_sel], xr) * self._rad_fn(xr, r_R[sp_sel]) self._superp.add_wake( algo, mdata, fdata, tdata, downwind_index, sp_sel, FV.WS, wake_deltas[FV.WS], -blockage, ) # set area behind to mirrored value EXCEPT for area behind turbine if not self.pre_rotor_only: sp_sel = (ct > 1e-8) & (x_R > 0) & (r_R > 1) if np.any(sp_sel): # velocity eqn 10 from [1] xr = x_R[sp_sel] blockage = self._a(ct[sp_sel], -xr) * self._rad_fn(-xr, r_R[sp_sel]) # wdelta[sp_sel] += blockage self._superp.add_wake( algo, mdata, fdata, tdata, downwind_index, sp_sel, FV.WS, wake_deltas[FV.WS], blockage, ) return wake_deltas
[docs] def finalize_wake_deltas( self, algo, mdata, fdata, amb_results, wake_deltas, ): """ Finalize the wake calculation. Modifies wake_deltas on the fly. Parameters ---------- algo: foxes.core.Algorithm The calculation algorithm mdata: foxes.core.MData The model data fdata: foxes.core.FData The farm data amb_results: dict The ambient results, key: variable name str, values: numpy.ndarray with shape (n_states, n_targets, n_tpoints) wake_deltas: dict The wake deltas object at the selected target turbines. Key: variable str, value: numpy.ndarray with shape (n_states, n_targets, n_tpoints) """ wake_deltas[FV.WS] = self._superp.calc_final_wake_delta( algo, mdata, fdata, FV.WS, amb_results[FV.WS], wake_deltas[FV.WS] )