Source code for foxes.models.wake_models.top_hat

import numpy as np
from abc import abstractmethod

from foxes.models.wake_models.axisymmetric import AxisymmetricWakeModel
import foxes.variables as FV
import foxes.constants as FC


[docs] class TopHatWakeModel(AxisymmetricWakeModel): """ Abstract base class for top-hat wake models. Parameters ---------- induction: foxes.core.AxialInductionModel or str The induction model :group: models.wake_models """
[docs] def __init__(self, superpositions, induction="Betz"): """ Constructor. Parameters ---------- superpositions: dict The superpositions. Key: variable name str, value: The wake superposition model name, will be looked up in model book induction: foxes.core.AxialInductionModel or str The induction model """ super().__init__(superpositions) self.induction = induction
[docs] def sub_models(self): """ List of all sub-models Returns ------- smdls: list of foxes.core.Model All sub models """ return [self.induction]
[docs] def initialize(self, algo, verbosity=0, force=False): """ Initializes the model. Parameters ---------- algo: foxes.core.Algorithm The calculation algorithm verbosity: int The verbosity level, 0 = silent force: bool Overwrite existing data """ if isinstance(self.induction, str): self.induction = algo.mbook.axial_induction[self.induction] super().initialize(algo, verbosity, force)
[docs] @abstractmethod def calc_wake_radius( self, algo, mdata, fdata, tdata, downwind_index, x, ct, ): """ Calculate the wake radius, depending on x only (not r). Parameters ---------- algo: foxes.core.Algorithm The calculation algorithm mdata: foxes.core.MData The model data fdata: foxes.core.FData The farm data tdata: foxes.core.TData The target point data downwind_index: int The index in the downwind order x: numpy.ndarray The x values, shape: (n_states, n_targets) ct: numpy.ndarray The ct values of the wake-causing turbines, shape: (n_states, n_targets) Returns ------- wake_r: numpy.ndarray The wake radii, shape: (n_states, n_targets) """ pass
[docs] @abstractmethod def calc_centreline( self, algo, mdata, fdata, tdata, downwind_index, st_sel, x, wake_r, ct, ): """ Calculate centre line results of wake deltas. Parameters ---------- algo: foxes.core.Algorithm The calculation algorithm mdata: foxes.core.MData The model data fdata: foxes.core.FData The farm data tdata: foxes.core.TData The target point data downwind_index: int The index in the downwind order st_sel: numpy.ndarray of bool The state-target selection, for which the wake is non-zero, shape: (n_states, n_targets) x: numpy.ndarray The x values, shape: (n_st_sel,) wake_r: numpy.ndarray The wake radii, shape: (n_st_sel,) ct: numpy.ndarray The ct values of the wake-causing turbines, shape: (n_st_sel,) Returns ------- cl_del: dict The centre line wake deltas. Key: variable name str, varlue: numpy.ndarray, shape: (n_st_sel,) """ pass
[docs] def calc_wakes_x_r( self, algo, mdata, fdata, tdata, downwind_index, x, r, ): """ Calculate wake deltas. Parameters ---------- algo: foxes.core.Algorithm The calculation algorithm mdata: foxes.core.MData The model data fdata: foxes.core.FData The farm data tdata: foxes.core.TData The target point data downwind_index: int The index in the downwind order x: numpy.ndarray The x values, shape: (n_states, n_targets) r: numpy.ndarray The radial values for each x value, shape: (n_states, n_targets, n_yz_per_target) Returns ------- wdeltas: dict The wake deltas. Key: variable name str, value: numpy.ndarray, shape: (n_st_sel, n_r_per_x) st_sel: numpy.ndarray of bool The state-target selection, for which the wake is non-zero, shape: (n_states, n_targets) """ ct = self.get_data( FV.CT, FC.STATE_TARGET, lookup="w", fdata=fdata, tdata=tdata, downwind_index=downwind_index, algo=algo, upcast=True, ) wake_r = self.calc_wake_radius(algo, mdata, fdata, tdata, downwind_index, x, ct) wdeltas = {} st_sel = (x > 1e-8) & (ct > 1e-8) & np.any(r < wake_r[:, :, None], axis=2) if np.any(st_sel): x = x[st_sel] r = r[st_sel] ct = ct[st_sel] wake_r = wake_r[st_sel] cl_del = self.calc_centreline( algo, mdata, fdata, tdata, downwind_index, st_sel, x, wake_r, ct ) isin = r < wake_r[:, None] for v, wdel in cl_del.items(): wdeltas[v] = np.where(isin, wdel[:, None], 0.0) return wdeltas, st_sel