[docs]classWSMax(WakeSuperposition):""" Max superposition of wind deficit results Attributes ---------- scale_amb: bool Flag for scaling wind deficit with ambient wind speed instead of waked wind speed lim_low: float Lower limit of the final waked wind speed lim_high: float Upper limit of the final waked wind speed :group: models.wake_superpositions """
[docs]def__init__(self,scale_amb=False,lim_low=None,lim_high=None):""" Constructor. Parameters ---------- scale_amb: bool Flag for scaling wind deficit with ambient wind speed instead of waked wind speed lim_low: float Lower limit of the final waked wind speed lim_high: float Upper limit of the final waked wind speed """super().__init__()self.scale_amb=scale_ambself.lim_low=lim_lowself.lim_high=lim_high
[docs]definput_farm_vars(self,algo):""" The variables which are needed for running the model. Parameters ---------- algo: foxes.core.Algorithm The calculation algorithm Returns ------- input_vars: list of str The input variable names """return[FV.AMB_REWS]ifself.scale_ambelse[FV.REWS]
[docs]defadd_wake(self,algo,mdata,fdata,tdata,downwind_index,st_sel,variable,wake_delta,wake_model_result,):""" Add a wake delta to previous wake deltas, at rotor points. Parameters ---------- algo: foxes.core.Algorithm The calculation algorithm mdata: foxes.core.MData The model data fdata: foxes.core.FData The farm data tdata: foxes.core.TData The target point data downwind_index: int The index of the wake causing turbine in the downwind order st_sel: numpy.ndarray of bool The selection of targets, shape: (n_states, n_targets) variable: str The variable name for which the wake deltas applies wake_delta: numpy.ndarray The original wake deltas, shape: (n_states, n_targets, n_tpoints, ...) wake_model_result: numpy.ndarray The new wake deltas of the selected rotors, shape: (n_st_sel, n_tpoints, ...) Returns ------- wdelta: numpy.ndarray The updated wake deltas, shape: (n_states, n_targets, n_tpoints, ...) """ifvariablenotin[FV.REWS,FV.REWS2,FV.REWS3,FV.WS]:raiseValueError(f"Superposition '{self.name}': Expecting wind speed variable, got {variable}")ifnp.any(st_sel):scale=self.get_data(FV.AMB_REWSifself.scale_ambelseFV.REWS,FC.STATE_TARGET_TPOINT,lookup="w",algo=algo,fdata=fdata,tdata=tdata,downwind_index=downwind_index,upcast=False,selection=st_sel,)wake_model_result=np.abs(scale*wake_model_result)odelta=wake_delta[st_sel]wake_delta[st_sel]=np.maximum(odelta,wake_model_result)returnwake_delta
[docs]defcalc_final_wake_delta(self,algo,mdata,fdata,variable,amb_results,wake_delta,):""" Calculate the final wake delta after adding all contributions. Parameters ---------- algo: foxes.core.Algorithm The calculation algorithm mdata: foxes.core.MData The model data fdata: foxes.core.FData The farm data variable: str The variable name for which the wake deltas applies amb_results: numpy.ndarray The ambient results at targets, shape: (n_states, n_targets, n_tpoints) wake_delta: numpy.ndarray The wake deltas at targets, shape: (n_states, n_targets, n_tpoints) Returns ------- final_wake_delta: numpy.ndarray The final wake delta, which will be added to the ambient results by simple plus operation. Shape: (n_states, n_targets, n_tpoints) """w=-wake_deltaifself.lim_lowisnotNone:w=np.maximum(w,self.lim_low-amb_results)ifself.lim_highisnotNone:w=np.minimum(w,self.lim_high-amb_results)returnw
[docs]classWSMaxLocal(WakeSuperposition):""" Local max superposition of wind deficit results Attributes ---------- lim_low: float Lower limit of the final waked wind speed lim_high: float Upper limit of the final waked wind speed :group: models.wake_superpositions """
[docs]def__init__(self,lim_low=None,lim_high=None):""" Constructor. Parameters ---------- lim_low: float Lower limit of the final waked wind speed lim_high: float Upper limit of the final waked wind speed """super().__init__()self.lim_low=lim_lowself.lim_high=lim_high
[docs]definput_farm_vars(self,algo):""" The variables which are needed for running the model. Parameters ---------- algo: foxes.core.Algorithm The calculation algorithm Returns ------- input_vars: list of str The input variable names """return[]
[docs]defadd_wake(self,algo,mdata,fdata,tdata,downwind_index,st_sel,variable,wake_delta,wake_model_result,):""" Add a wake delta to previous wake deltas, at rotor points. Parameters ---------- algo: foxes.core.Algorithm The calculation algorithm mdata: foxes.core.MData The model data fdata: foxes.core.FData The farm data tdata: foxes.core.TData The target point data downwind_index: int The index of the wake causing turbine in the downwind order st_sel: numpy.ndarray of bool The selection of targets, shape: (n_states, n_targets) variable: str The variable name for which the wake deltas applies wake_delta: numpy.ndarray The original wake deltas, shape: (n_states, n_targets, n_tpoints, ...) wake_model_result: numpy.ndarray The new wake deltas of the selected rotors, shape: (n_st_sel, n_tpoints, ...) Returns ------- wdelta: numpy.ndarray The updated wake deltas, shape: (n_states, n_targets, n_tpoints, ...) """ifvariablenotin[FV.REWS,FV.REWS2,FV.REWS3,FV.WS]:raiseValueError(f"Superposition '{self.name}': Expecting wind speed variable, got {variable}")ifnp.any(st_sel):wake_model_result=np.abs(wake_model_result)odelta=wake_delta[st_sel]wake_delta[st_sel]=np.maximum(odelta,wake_model_result)returnwake_delta
[docs]defcalc_final_wake_delta(self,algo,mdata,fdata,variable,amb_results,wake_delta,):""" Calculate the final wake delta after adding all contributions. Parameters ---------- algo: foxes.core.Algorithm The calculation algorithm mdata: foxes.core.MData The model data fdata: foxes.core.FData The farm data variable: str The variable name for which the wake deltas applies amb_results: numpy.ndarray The ambient results at targets, shape: (n_states, n_targets, n_tpoints) wake_delta: numpy.ndarray The wake deltas at targets, shape: (n_states, n_targets, n_tpoints) Returns ------- final_wake_delta: numpy.ndarray The final wake delta, which will be added to the ambient results by simple plus operation. Shape: (n_states, n_targets, n_tpoints) """w=-wake_delta*amb_resultsifself.lim_lowisnotNone:w=np.maximum(w,self.lim_low-amb_results)ifself.lim_highisnotNone:w=np.minimum(w,self.lim_high-amb_results)returnw