import numpy as np
from matplotlib.path import Path
from matplotlib.patches import PathPatch
from scipy.spatial.distance import cdist
import matplotlib.pyplot as plt
from .area_geometry import AreaGeometry
[docs]
class ClosedPolygon(AreaGeometry):
"""
This class represents a closed 2D polygon.
Attributes
----------
points: numpy.ndarray
The polygon points
poly: matplotlib.path.Path
The closed polygon geometry
:group: utils.geom2d
"""
[docs]
def __init__(self, points):
"""
Constructor.
Parameters
----------
points: numpy.ndarray
The polygon points, shape: (n_points, 2)
"""
self.points = points
if not np.all(points[0] == points[-1]):
self.points = np.append(self.points, points[[0]], axis=0)
self.poly = Path(self.points, closed=True)
self._pathp = None
[docs]
def p_min(self):
"""
Returns minimal (x,y) point.
Returns
-------
p_min: numpy.ndarray
The minimal (x,y) point, shape = (2,)
"""
return np.min(self.points, axis=0)
[docs]
def p_max(self):
"""
Returns maximal (x,y) point.
Returns
-------
p_min: numpy.ndarray
The maximal (x,y) point, shape = (2,)
"""
return np.max(self.points, axis=0)
[docs]
def points_distance(self, points, return_nearest=False):
"""
Calculates point distances wrt boundary.
Parameters
----------
points: numpy.ndarray
The probe points, shape (n_points, 2)
return_nearest: bool
Flag for return of the nearest point on boundary
Returns
-------
dist: numpy.ndarray
The smallest distances to the boundary,
shape: (n_points,)
p_nearest: numpy.ndarray, optional
The nearest points on the boundary, if
return_nearest is True, shape: (n_points, 2)
"""
dists = cdist(points, self.points[:-1])
if return_nearest:
mini = np.argmin(dists, axis=1)
dists = np.take_along_axis(dists, mini[:, None], axis=1)[:, 0]
minp = self.points[mini]
del mini
else:
dists = np.min(dists, axis=1)
for pi in range(len(self.points) - 1):
pA = self.points[pi]
pB = self.points[pi + 1]
n = pB - pA
d = np.linalg.norm(n)
if d > 0:
n /= d
q = points - pA[None, :]
x = np.einsum("pd,d->p", q, n)
sel = (x > 0) & (x < d)
if np.any(sel):
x = x[sel]
y2 = np.maximum(np.linalg.norm(q[sel], axis=1) ** 2 - x**2, 0.0)
dsel = dists[sel]
dists[sel] = np.minimum(dsel, np.sqrt(y2))
if return_nearest:
mini = np.argwhere(np.sqrt(y2) < dsel)
hminp = minp[sel]
hminp[mini] = pA[None, :] + x[mini, None] * n[None, :]
minp[sel] = hminp
del mini, hminp
del y2, dsel
del x, sel
if return_nearest:
return dists, minp
else:
return dists
[docs]
def points_inside(self, points):
"""
Tests if points are inside the geometry.
Parameters
----------
points: numpy.ndarray
The probe points, shape (n_points, 2)
Returns
-------
inside: numpy.ndarray
True if point is inside, shape: (n_points,)
"""
return self.poly.contains_points(points)
if __name__ == "__main__":
points = np.array([[1.0, 1.0], [1.3, 6], [5.8, 6.2], [6.5, 0.8]])
N = 500
fig, ax = plt.subplots()
g = ClosedPolygon(points)
g.add_to_figure(ax, fill_mode="dist_inside")
plt.show()
plt.close(fig)
fig, ax = plt.subplots()
g = ClosedPolygon(points)
g.add_to_figure(ax, fill_mode="dist_outside")
plt.show()
plt.close(fig)
fig, ax = plt.subplots()
g = ClosedPolygon(points).inverse()
g.add_to_figure(ax, fill_mode="dist_inside")
plt.show()
plt.close(fig)
fig, ax = plt.subplots()
g = ClosedPolygon(points).inverse()
g.add_to_figure(ax, fill_mode="dist_outside")
plt.show()
plt.close(fig)