- class iwopy.core.MultiObjOptResults[source]
Container for optimization results for multi objective problems.
Attributes¶
- success: bool
Optimization success
- vars_int: np.array
Pareto-optimal variables, shape: (n_pop, n_vars_int)
- vars_float: np.array
Pareto-optimal variables, shape: (n_pop, n_vars_float)
- objs: np.array
Pareto front objective function values, shape: (n_pop, n_objectives)
- cons: np.array
Parteo front Constraint values, shape: (n_pop, n_constraints)
- problem_results: Object
The results of the variable application to the problem
- pname: str
The problem’s name
- vnames_int: list of str
The int variable names
- vnames_float: list of str
The float variable names
- onames: list of str
The names of objectives
- cnames: list of str
The names of constraints
Public members¶
- MultiObjOptResults(problem, success, vars_int, vars_float, ...)[source]
Constructor
-
plot_pareto(obj_0=
0
, obj_1=1
, ax=None
, figsize=(5, 5)
, s=50
, ...)[source] Get figure that shows the pareto front
-
find_pareto_objmix(obj_weights, max=
False
)[source] Find the point on the pareto front that approximates best the given weights of objectives