- 
iwopy.core.Problem.calc_gradients(vars_int, vars_float, func, components, ivars, fvars, vrs, pop=False, verbosity=0)[source]
- The actual gradient calculation, not to be called directly (call get_gradients instead). - Can be overloaded in derived classes, the base class only considers analytic derivatives. - Parameters¶- vars_int: np.array
- The integer variable values, shape: (n_vars_int,) 
- vars_float: np.array
- The float variable values, shape: (n_vars_float,) 
- func: iwopy.core.OptFunctionList, optional
- The functions to be differentiated, or None for a list of all objectives and all constraints (in that order) 
- components: list of int, optional
- The function’s component selection, or None for all 
- ivars: list of int
- The indices of the function int variables in the problem 
- fvars: list of int
- The indices of the function float variables in the problem 
- vrs: list of int
- The function float variable indices wrt which the derivatives are to be calculated 
- pop: bool
- Flag for vectorizing calculations via population 
- verbosity: int
- The verbosity level, 0 = silent 
 - Returns¶- gradients: numpy.ndarray
- The gradients of the functions, shape: (n_components, n_vrs)