Source code for foxes_opt.core.farm_opt_problem

import numpy as np
from iwopy import Problem

from foxes.config import config

from .pop_states import PopStates


[docs] class FarmOptProblem(Problem): """ Abstract base class of wind farm optimization problems. Attributes ---------- algo: foxes.core.Algorithm The algorithm calc_farm_args: dict Additional parameters for algo.calc_farm() points : numpy.ndarray The probe points, shape: (n_states, n_points, 3) :group: opt.core """
[docs] def __init__( self, name, algo, sel_turbines=None, calc_farm_args={}, points=None, **kwargs, ): """ Constructor. Parameters ---------- name: str The problem's name algo: foxes.core.Algorithm The algorithm sel_turbines: list of int, optional The turbines selected for optimization, or None for all calc_farm_args: dict Additional parameters for algo.calc_farm() points : numpy.ndarray, optional The probe points, shape: (n_states, n_points, 3) kwargs: dict, optional Additional parameters for `iwopy.Problem` """ super().__init__(name, **kwargs) self.algo = algo self.calc_farm_args = calc_farm_args self.points = points self._sel_turbines = sel_turbines self._count = None
@property def farm(self): """ The wind farm Returns ------- foxes.core.WindFarm : The wind farm """ return self.algo.farm @property def sel_turbines(self): """ The selected turbines Returns ------- list of int : Indices of the selected turbines """ return ( self._sel_turbines if self._sel_turbines is not None else list(range(self.farm.n_turbines)) ) @property def n_sel_turbines(self): """ The numer of selected turbines Returns ------- int : The numer of selected turbines """ return len(self.sel_turbines) @property def all_turbines(self): """ Flag for all turbines optimization Returns ------- bool : True if all turbines are subject to optimization """ return len(self.sel_turbines) == self.algo.n_turbines @property def counter(self): """ The current value of the application counter Returns ------- int : The current value of the application counter """ return self._count
[docs] @classmethod def tvar(cls, var, turbine_i): """ Gets turbine variable name Parameters ---------- var: str The variable name turbine_i: int The turbine index Returns ------- str : The turbine variable name """ return f"{var}_{turbine_i:04d}"
[docs] @classmethod def parse_tvar(cls, tvr): """ Parse foxes variable name and turbine index from turbine variable Parameters ---------- tvr: str The turbine variable name Returns ------- var: str The foxes variable name turbine_i: int The turbine index """ t = tvr.split("_") return t[0], int(t[1])
[docs] def initialize(self, verbosity=1): """ Initialize the object. Parameters ---------- verbosity: int The verbosity level, 0 = silent """ if not self.algo.initialized: self.algo.initialize() self._org_states_name = self.algo.states.name self._org_n_states = self.algo.n_states self._org_weights = self.algo.states.weights(self.algo) self.algo.finalize() self._count = 0 super().initialize(verbosity)
def _reset_states(self, states): """ Reset the states in the algorithm """ if states is not self.algo.states: if self.algo.initialized: self.algo.finalize() self.algo.states = states
[docs] def update_problem_individual(self, vars_int, vars_float): """ Update the algo and other data using the latest optimization variables. This function is called before running the farm calculation. Parameters ---------- vars_int: np.array The integer variable values, shape: (n_vars_int,) vars_float: np.array The float variable values, shape: (n_vars_float,) """ # reset states, if needed: if isinstance(self.algo.states, PopStates): self._reset_states(self.algo.states.states) self.algo.n_states = self._org_n_states
[docs] def update_problem_population(self, vars_int, vars_float): """ Update the algo and other data using the latest optimization variables. This function is called before running the farm calculation. Parameters ---------- vars_int: np.array The integer variable values, shape: (n_pop, n_vars_int,) vars_float: np.array The float variable values, shape: (n_pop, n_vars_float,) """ # set/reset pop states, if needed: n_pop = len(vars_float) if not isinstance(self.algo.states, PopStates): self._reset_states(PopStates(self.algo.states, n_pop)) elif self.algo.states.n_pop != n_pop: ostates = self.algo.states.states self._reset_states(PopStates(ostates, n_pop))
[docs] def apply_individual(self, vars_int, vars_float): """ Apply new variables to the problem. Parameters ---------- vars_int: np.array The integer variable values, shape: (n_vars_int,) vars_float: np.array The float variable values, shape: (n_vars_float,) Returns ------- problem_results: Any The results of the variable application to the problem """ self._count += 1 self.update_problem_individual(vars_int, vars_float) farm_results = self.algo.calc_farm(**self.calc_farm_args) if self.points is None: return farm_results else: point_results = self.algo.calc_points(farm_results, self.points) return farm_results, point_results
[docs] def apply_population(self, vars_int, vars_float): """ Apply new variables to the problem, for a whole population. Parameters ---------- vars_int: np.array The integer variable values, shape: (n_pop, n_vars_int) vars_float: np.array The float variable values, shape: (n_pop, n_vars_float) Returns ------- problem_results: Any The results of the variable application to the problem """ self._count += 1 self.update_problem_population(vars_int, vars_float) farm_results = self.algo.calc_farm(**self.calc_farm_args) farm_results["n_pop"] = len(vars_float) farm_results["n_org_states"] = self._org_n_states if self.points is None: return farm_results else: n_pop = farm_results["n_pop"].values n_states, n_points = self.points.shape[:2] pop_points = np.zeros( (n_pop, n_states, n_points, 3), dtype=config.dtype_double ) pop_points[:] = self.points[None, :, :, :] pop_points = pop_points.reshape(n_pop * n_states, n_points, 3) point_results = self.algo.calc_points(farm_results, pop_points) return farm_results, point_results
[docs] def add_to_layout_figure(self, ax, **kwargs): """ Add to a layout figure Parameters ---------- ax: matplotlib.pyplot.Axis The figure axis """ for c in self.cons.functions: ax = c.add_to_layout_figure(ax, **kwargs) for f in self.objs.functions: ax = f.add_to_layout_figure(ax, **kwargs) return ax