Source code for foxes_opt.objectives.farm_vars

import numpy as np
import xarray as xr

from foxes_opt.core.farm_objective import FarmObjective
from foxes import variables as FV
import foxes.constants as FC


[docs] class FarmVarObjective(FarmObjective): """ Objectives based on farm variables. Attributes ---------- variable: str The variable name minimize: bool Switch for maximizing or minimizing deps: list of str The foxes variables on which the variable depends, or None for all rules: dict Contraction rules. Key: coordinate name str, value is str: weights, mean_no_weights, sum, min, max scale: float The scaling factor :group: opt.objectives """
[docs] def __init__( self, problem, name, variable, contract_states, contract_turbines, minimize, deps=None, scale=1.0, **kwargs, ): """ Constructor. Parameters ---------- problem: foxes_opt.FarmOptProblem The underlying optimization problem name: str The name of the objective function variable: str The foxes variable name contract_states: str Contraction rule for states: min, max, sum, mean, weights contract_turbines: str Contraction rule for turbines: min, max, sum, mean minimize: bool Switch for maximizing or minimizing deps: list of str The foxes variables on which the variable depends, or None for all scale: float The scaling factor kwargs: dict, optional Additional parameters for `FarmObjective` """ super().__init__(problem, name, **kwargs) self.variable = variable self.minimize = minimize self.deps = deps self.scale = scale self.rules = {FC.STATE: contract_states, FC.TURBINE: contract_turbines}
[docs] def initialize(self, verbosity=0): """ Initialize the object. Parameters ---------- verbosity: int The verbosity level, 0 = silent """ super().initialize(verbosity)
[docs] def n_components(self): """ Returns the number of components of the function. Returns ------- int: The number of components. """ return 1
[docs] def maximize(self): """ Returns flag for maximization of each component. Returns ------- flags: np.array Bool array for component maximization, shape: (n_components,) """ return [not self.minimize]
[docs] def vardeps_float(self): """ Gets the dependencies of all components on the function float variables Returns ------- deps: numpy.ndarray of bool The dependencies of components on function variables, shape: (n_components, n_vars_float) """ if self.deps is None: return super().vardeps_float() out = np.zeros((self.n_components(), self.n_vars_float), dtype=bool) for i, tvr in enumerate(self.var_names_float): v, ti = self.problem.parse_tvar(tvr) if v in self.deps and ti in self.sel_turbines: out[0, i] = True return out
def _contract(self, data): """ Helper function for data contraction """ for dim, rule in self.rules.items(): if rule == "min": data = data.min(dim=dim) elif rule == "max": data = data.max(dim=dim) elif rule == "sum": data = data.sum(dim=dim) elif rule == "mean_no_weights": data = data.mean(dim=dim) elif dim == FC.STATE and rule == "weights": odims = data.dims weights = self.problem._org_weights if len(odims) > 1 and odims[:2] == (FC.STATE, FC.TURBINE): data = np.einsum("st...,st->t...", data, weights) data = xr.DataArray(data, dims=odims[1:]) elif len(odims) > 2 and odims[:3] == (FC.POP, FC.STATE, FC.TURBINE): data = np.einsum("pst...,st->pt...", data, weights) data = xr.DataArray(data, dims=(FC.POP,) + odims[2:]) else: raise NotImplementedError( f"Contraction error for '{rule}' for dim '{dim}': Incompatible data dims {odims}, shape {data.shape}, for weights of shape {weights.shape}" ) elif dim == FC.STATE: raise ValueError( f"Objective '{self.name}': Unknown contraction for dimension '{dim}': '{rule}'. Choose: weights, mean_no_weights, sum, min, max" ) else: raise ValueError( f"Objective '{self.name}': Unknown contraction for dimension '{dim}': '{rule}'. Choose: min, max, sum, mean_no_weights" ) return data
[docs] def calc_individual(self, vars_int, vars_float, problem_results, components=None): """ Calculate values for a single individual of the underlying problem. Parameters ---------- vars_int: np.array The integer variable values, shape: (n_vars_int,) vars_float: np.array The float variable values, shape: (n_vars_float,) problem_results: Any The results of the variable application to the problem components: list of int, optional The selected components or None for all Returns ------- values: np.array The component values, shape: (n_sel_components,) """ data = problem_results[self.variable] if self.n_sel_turbines < self.farm.n_turbines: data = data[:, self.sel_turbines] data = self._contract(data) / self.scale return np.array([data], dtype=np.float64)
[docs] def calc_population(self, vars_int, vars_float, problem_results, components=None): """ Calculate values for all individuals of a population. Parameters ---------- vars_int: np.array The integer variable values, shape: (n_pop, n_vars_int) vars_float: np.array The float variable values, shape: (n_pop, n_vars_float) problem_results: Any The results of the variable application to the problem components: list of int, optional The selected components or None for all Returns ------- values: np.array The component values, shape: (n_pop, n_sel_components) """ n_pop = problem_results["n_pop"].values n_states = problem_results["n_org_states"].values n_turbines = problem_results.sizes[FC.TURBINE] data = ( problem_results[self.variable] .to_numpy() .reshape(n_pop, n_states, n_turbines) ) data = xr.DataArray(data, dims=(FC.POP, FC.STATE, FC.TURBINE)) if self.n_sel_turbines < self.farm.n_turbines: data = data[:, self.sel_turbines] return self._contract(data / self.scale).to_numpy()[:, None]
[docs] def finalize_individual(self, vars_int, vars_float, problem_results, verbosity=1): """ Finalization, given the champion data. Parameters ---------- vars_int: np.array The optimal integer variable values, shape: (n_vars_int,) vars_float: np.array The optimal float variable values, shape: (n_vars_float,) problem_results: Any The results of the variable application to the problem verbosity: int The verbosity level, 0 = silent Returns ------- values: np.array The component values, shape: (n_components,) """ return ( super().finalize_individual( vars_int, vars_float, problem_results, verbosity ) * self.scale )
[docs] class MaxFarmPower(FarmVarObjective): """ Maximize the mean wind farm power Parameters ---------- problem: foxes_opt.FarmOptProblem The underlying optimization problem name: str The name of the objective function kwargs: dict, optional Additional parameters for `FarmVarObjective` :group: opt.objectives """
[docs] def __init__(self, problem, name="maximize_power", **kwargs): if "scale" in kwargs: scale = kwargs.pop("scale") else: scale = 0.0 ttypes = problem.algo.mbook.turbine_types for t in problem.farm.turbines: for mname in t.models: if mname in ttypes: scale += ttypes[mname].P_nominal break super().__init__( problem, name, variable=FV.P, contract_states="weights", contract_turbines="sum", minimize=False, scale=scale, **kwargs, )
[docs] class MinimalMaxTI(FarmVarObjective): """ Minimize the maximal turbine TI Parameters ---------- problem: foxes_opt.FarmOptProblem The underlying optimization problem name: str The name of the objective function kwargs: dict, optional Additional parameters for `FarmVarObjective` :group: opt.objectives """
[docs] def __init__(self, problem, name="minimize_TI", **kwargs): scale = kwargs.pop("scale") if "scale" in kwargs else 1.0 super().__init__( problem, name, variable=FV.TI, contract_states="max", contract_turbines="max", minimize=True, scale=scale, **kwargs, )