Source code for foxes_opt.problems.layout.farm_layout

import numpy as np

from foxes_opt.core.farm_opt_problem import FarmOptProblem
from foxes.config import config
import foxes.variables as FV


[docs] class FarmLayoutOptProblem(FarmOptProblem): """ The turbine positioning optimization problem :group: opt.problems.layout """
[docs] def var_names_float(self): """ The names of float variables. Returns ------- names: list of str The names of the float variables """ vrs = [] for ti in self.sel_turbines: vrs += [self.tvar(FV.X, ti), self.tvar(FV.Y, ti)] return vrs
[docs] def initial_values_float(self): """ The initial values of the float variables. Returns ------- values: numpy.ndarray Initial float values, shape: (n_vars_float,) """ out = np.zeros((self.n_sel_turbines, 2), dtype=config.dtype_double) for i, ti in enumerate(self.sel_turbines): out[i] = self.farm.turbines[ti].xy return out.reshape(self.n_sel_turbines * 2)
[docs] def min_values_float(self): """ The minimal values of the float variables. Use -numpy.inf for unbounded. Returns ------- values: numpy.ndarray Minimal float values, shape: (n_vars_float,) """ b = self.farm.boundary assert b is not None, f"Problem '{self.name}': Missing wind farm boundary." out = np.zeros((self.n_sel_turbines, 2), dtype=config.dtype_double) out[:] = b.p_min()[None, :] return out.reshape(self.n_sel_turbines * 2)
[docs] def max_values_float(self): """ The maximal values of the float variables. Use numpy.inf for unbounded. Returns ------- values: numpy.ndarray Maximal float values, shape: (n_vars_float,) """ b = self.farm.boundary assert b is not None, f"Problem '{self.name}': Missing wind farm boundary." out = np.zeros((self.n_sel_turbines, 2), dtype=config.dtype_double) out[:] = b.p_max()[None, :] return out.reshape(self.n_sel_turbines * 2)
[docs] def update_problem_individual(self, vars_int, vars_float): """ Update the algo and other data using the latest optimization variables. This function is called before running the farm calculation. Parameters ---------- vars_int: np.array The integer variable values, shape: (n_vars_int,) vars_float: np.array The float variable values, shape: (n_vars_float,) """ super().update_problem_individual(vars_int, vars_float) xy = vars_float.reshape(self.n_sel_turbines, 2) for i, ti in enumerate(self.sel_turbines): t = self.algo.farm.turbines[ti] t.xy = xy[i]
[docs] def update_problem_population(self, vars_int, vars_float): """ Update the algo and other data using the latest optimization variables. This function is called before running the farm calculation. Parameters ---------- vars_int: np.array The integer variable values, shape: (n_pop, n_vars_int,) vars_float: np.array The float variable values, shape: (n_pop, n_vars_float,) """ super().update_problem_population(vars_int, vars_float) n_pop = len(vars_float) n_ostates = self._org_n_states n_states = n_pop * n_ostates xy = vars_float.reshape(n_pop, self.n_sel_turbines, 2) sxy = np.zeros( (n_pop, n_ostates, self.n_sel_turbines, 2), dtype=vars_float.dtype ) sxy[:] = xy[:, None, :, :] sxy = sxy.reshape(n_states, self.n_sel_turbines, 2) del xy for i, ti in enumerate(self.sel_turbines): t = self.algo.farm.turbines[ti] t.xy = sxy[:, i]