Source code for foxes_opt.problems.layout.geom_layouts.geom_layout

import numpy as np
import matplotlib.pyplot as plt
from scipy.spatial.distance import cdist
from iwopy import Problem

from foxes.config import config


[docs] class GeomLayout(Problem): """ A layout within a boundary geometry, purely defined by geometrical optimization (no wakes). This optimization problem does not involve wind farms. Attributes ---------- boundary: foxes.utils.geom2d.AreaGeometry The boundary geometry n_turbines: int The number of turbines in the layout min_dist: float The minimal distance between points D: float The diameter of circle fully within boundary calc_valid: bool Evaluate validity :group: opt.problems.layout.geom_layouts """
[docs] def __init__( self, boundary, n_turbines, min_dist=None, D=None, calc_valid=None, ): """ Constructor. Parameters ---------- boundary: foxes.utils.geom2d.AreaGeometry The boundary geometry n_turbines: int The number of turbines in the layout min_dist: float, optional The minimal distance between points D: float, optional The diameter of circle fully within boundary calc_valid: bool, optional Evaluate validity """ super().__init__(name="geom_reg_grids") self.boundary = boundary self.n_turbines = n_turbines self.D = D self.min_dist = min_dist self.calc_valid = calc_valid if calc_valid is None: self.calc_valid = min_dist is not None or D is not None self._X = [f"x{i}" for i in range(self.n_turbines)] self._Y = [f"y{i}" for i in range(self.n_turbines)]
[docs] def initialize(self, verbosity=1): """ Initialize the object. Parameters ---------- verbosity: int The verbosity level, 0 = silent """ super().initialize(verbosity) self.apply_individual(self.initial_values_int(), self.initial_values_float())
[docs] def var_names_float(self): """ The names of float variables. Returns ------- names: list of str The names of the float variables """ return list(np.array([self._X, self._Y]).T.flat)
[docs] def initial_values_float(self): """ The initial values of the float variables. Returns ------- values: numpy.ndarray Initial float values, shape: (n_vars_float,) """ pmin = self.boundary.p_min() pmax = self.boundary.p_max() pc = 0.5 * (pmin + pmax) delta = 0.8 * (pmax - pmin) vals = np.zeros((self.n_turbines, 2), dtype=config.dtype_double) vals[:] = pc[None, :] - 0.5 * delta[None, :] vals[:] += ( np.arange(self.n_turbines)[:, None] * delta[None, :] / (self.n_turbines - 1) ) return vals.reshape(self.n_turbines * 2)
[docs] def min_values_float(self): """ The minimal values of the float variables. Use -numpy.inf for unbounded. Returns ------- values: numpy.ndarray Minimal float values, shape: (n_vars_float,) """ vals = np.zeros((self.n_turbines, 2), dtype=config.dtype_double) vals[:] = self.boundary.p_min()[None, :] return vals.reshape(self.n_turbines * 2)
[docs] def max_values_float(self): """ The maximal values of the float variables. Use numpy.inf for unbounded. Returns ------- values: numpy.ndarray Maximal float values, shape: (n_vars_float,) """ vals = np.zeros((self.n_turbines, 2), dtype=config.dtype_double) vals[:] = self.boundary.p_max()[None, :] return vals.reshape(self.n_turbines * 2)
[docs] def apply_individual(self, vars_int, vars_float): """ Apply new variables to the problem. Parameters ---------- vars_int: np.array The integer variable values, shape: (n_vars_int,) vars_float: np.array The float variable values, shape: (n_vars_float,) Returns ------- problem_results: Any The results of the variable application to the problem """ xy = vars_float.reshape(self.n_turbines, 2) valid = None if self.calc_valid: if self.D is None: valid = self.boundary.points_inside(xy) else: valid = self.boundary.points_inside(xy) & ( self.boundary.points_distance(xy) >= self.D / 2 ) if self.min_dist is not None: dists = cdist(xy, xy) np.fill_diagonal(dists, 1e20) dists = np.min(dists, axis=1) valid[dists < self.min_dist] = False return xy, valid
[docs] def apply_population(self, vars_int, vars_float): """ Apply new variables to the problem, for a whole population. Parameters ---------- vars_int: np.array The integer variable values, shape: (n_pop, n_vars_int) vars_float: np.array The float variable values, shape: (n_pop, n_vars_float) Returns ------- problem_results: Any The results of the variable application to the problem """ n_pop = vars_float.shape[0] xy = vars_float.reshape(n_pop, self.n_turbines, 2) valid = None if self.calc_valid: qts = xy.reshape(n_pop * self.n_turbines, 2) if self.D is None: valid = self.boundary.points_inside(qts) else: valid = self.boundary.points_inside(qts) & ( self.boundary.points_distance(qts) >= self.D / 2 ) valid = valid.reshape(n_pop, self.n_turbines) if self.min_dist is not None: for pi in range(n_pop): dists = cdist(xy[pi], xy[pi]) np.fill_diagonal(dists, 1e20) dists = np.min(dists, axis=1) valid[pi, dists < self.min_dist] = False return xy, valid
[docs] def get_fig( self, xy=None, valid=None, ax=None, title=None, true_circle=True, **bargs ): """ Return plotly figure axis. Parameters ---------- xy: numpy.ndarary, optional The xy coordinate array, shape: (n_points, 2) valid: numpy.ndarray, optional Boolean array of validity, shape: (n_points,) ax: pyplot.Axis, optional The figure axis title: str, optional The figure title true_circle: bool Draw points as circles with diameter self.D bars: dict, optional The boundary plot arguments Returns ------- ax: pyplot.Axis The figure axis """ if ax is None: __, ax = plt.subplots() hbargs = {"fill_mode": "inside_lightgray"} hbargs.update(bargs) self.boundary.add_to_figure(ax, **hbargs) if xy is not None: if valid is not None: xy = xy[valid] if not true_circle or self.D is None: ax.scatter(xy[:, 0], xy[:, 1], color="orange") else: for x, y in xy: ax.add_patch( plt.Circle((x, y), self.D / 2, color="blue", fill=True) ) ax.set_aspect("equal", adjustable="box") ax.set_xlabel("x [m]") ax.set_ylabel("y [m]") if title is None: if xy is None: title = f"Optimization area" else: l = len(xy) if xy is not None else 0 dists = cdist(xy, xy) np.fill_diagonal(dists, 1e20) title = f"N = {l}, min_dist = {np.min(dists):.1f} m" ax.set_title(title) return ax