Source code for foxes_opt.problems.layout.geom_layouts.geom_layout_gridded

import numpy as np
import matplotlib.pyplot as plt
from scipy.spatial.distance import cdist
from iwopy import Problem

from foxes.config import config


[docs] class GeomLayoutGridded(Problem): """ A layout within a boundary geometry, purely defined by geometrical optimization (no wakes), on a fixes background point grid. This optimization problem does not involve wind farms. Attributes ---------- boundary: foxes.utils.geom2d.AreaGeometry The boundary geometry n_turbines: int The number of turbines in the layout grid_spacing: float The background grid spacing min_dist: float The minimal distance between points D: float The diameter of circle fully within boundary :group: opt.problems.layout.geom_layouts """
[docs] def __init__( self, boundary, n_turbines, grid_spacing, min_dist=None, D=None, ): """ Constructor. Parameters ---------- boundary: foxes.utils.geom2d.AreaGeometry The boundary geometry n_turbines: int The number of turbines in the layout grid_spacing: float The background grid spacing min_dist: float, optional The minimal distance between points D: float, optional The diameter of circle fully within boundary """ super().__init__(name="geom_reg_grids") self.boundary = boundary self.n_turbines = n_turbines self.grid_spacing = grid_spacing self.D = D self.min_dist = min_dist self._I = [f"i{i}" for i in range(self.n_turbines)]
[docs] def initialize(self, verbosity=1): """ Initialize the object. Parameters ---------- verbosity: int The verbosity level, 0 = silent """ super().initialize(verbosity) pmin = self.boundary.p_min() pmax = self.boundary.p_max() + self.grid_spacing self._pts = np.stack( np.meshgrid( np.arange(pmin[0], pmax[0], self.grid_spacing), np.arange(pmin[1], pmax[1], self.grid_spacing), indexing="ij", ), axis=-1, ) nx, ny = self._pts.shape[:2] self._pts = self._pts.reshape(nx * ny, 2) if self.D is None: valid = self.boundary.points_inside(self._pts) else: valid = self.boundary.points_inside(self._pts) & ( self.boundary.points_distance(self._pts) >= self.D / 2 ) self._pts = self._pts[valid] self._N = len(self._pts) if verbosity > 0: print(f"Problem '{self.name}': n_bgd_pts = {self._N}") if self._N < self.n_turbines: raise ValueError( f"Problem '{self.name}': Background grid only provides {self._N} points for {self.n_turbines} turbines" ) self.apply_individual(self.initial_values_int(), self.initial_values_float())
[docs] def var_names_int(self): """ The names of int variables. Returns ------- names: list of str The names of the int variables """ return self._I
[docs] def initial_values_int(self): """ The initial values of the int variables. Returns ------- values: numpy.ndarray Initial int values, shape: (n_vars_int,) """ return np.arange(self.n_turbines, dtype=config.dtype_int)
[docs] def min_values_int(self): """ The minimal values of the int variables. Returns ------- values: numpy.ndarray Minimal int values, shape: (n_vars_int,) """ return np.zeros(self.n_turbines, dtype=config.dtype_int)
[docs] def max_values_int(self): """ The maximal values of the int variables. Returns ------- values: numpy.ndarray Maximal int values, shape: (n_vars_int,) """ return np.full(self.n_turbines, self._N - 1, dtype=config.dtype_int)
[docs] def apply_individual(self, vars_int, vars_float): """ Apply new variables to the problem. Parameters ---------- vars_int: np.array The integer variable values, shape: (n_vars_int,) vars_float: np.array The float variable values, shape: (n_vars_float,) Returns ------- problem_results: Any The results of the variable application to the problem """ xy = self._pts[vars_int.astype(config.dtype_int)] __, ui = np.unique(vars_int, return_index=True) valid = np.zeros(self.n_turbines, dtype=bool) valid[ui] = True return xy, valid
[docs] def apply_population(self, vars_int, vars_float): """ Apply new variables to the problem, for a whole population. Parameters ---------- vars_int: np.array The integer variable values, shape: (n_pop, n_vars_int) vars_float: np.array The float variable values, shape: (n_pop, n_vars_float) Returns ------- problem_results: Any The results of the variable application to the problem """ n_pop = vars_int.shape[0] vint = vars_int.reshape(n_pop * self.n_turbines).astype(config.dtype_int) xy = self._pts[vint, :].reshape(n_pop, self.n_turbines, 2) valid = np.zeros((n_pop, self.n_turbines), dtype=bool) for pi in range(n_pop): __, ui = np.unique(vars_int[pi], return_index=True) valid[pi, ui] = True return xy, valid
[docs] def get_fig( self, xy=None, valid=None, ax=None, title=None, true_circle=True, **bargs ): """ Return plotly figure axis. Parameters ---------- xy: numpy.ndarary, optional The xy coordinate array, shape: (n_points, 2) valid: numpy.ndarray, optional Boolean array of validity, shape: (n_points,) ax: pyplot.Axis, optional The figure axis title: str, optional The figure title true_circle: bool Draw points as circles with diameter self.D bars: dict, optional The boundary plot arguments Returns ------- ax: pyplot.Axis The figure axis """ if ax is None: __, ax = plt.subplots() hbargs = {"fill_mode": "inside_lightgray"} hbargs.update(bargs) self.boundary.add_to_figure(ax, **hbargs) if xy is not None: if valid is not None: xy = xy[valid] if not true_circle or self.D is None: ax.scatter(xy[:, 0], xy[:, 1], color="orange") else: for x, y in xy: ax.add_patch( plt.Circle((x, y), self.D / 2, color="blue", fill=True) ) ax.set_aspect("equal", adjustable="box") ax.set_xlabel("x [m]") ax.set_ylabel("y [m]") if title is None: if xy is None: title = f"Optimization area" else: l = len(xy) if xy is not None else 0 dists = cdist(xy, xy) np.fill_diagonal(dists, 1e20) title = f"N = {l}, min_dist = {np.min(dists):.1f} m" ax.set_title(title) return ax