Source code for foxes_opt.problems.layout.geom_layouts.geom_reggrid

import numpy as np
import matplotlib.pyplot as plt
from scipy.spatial.distance import cdist
from iwopy import Problem

from foxes.config import config


[docs] class GeomRegGrid(Problem): """ A regular grid within a boundary geometry. This optimization problem does not involve wind farms. Attributes ---------- boundary: foxes.utils.geom2d.AreaGeometry The boundary geometry n_turbines: int The number of turbines in the layout min_dist: float The minimal distance between points max_dist: float The maximal distance between points D: float The diameter of circle fully within boundary :group: opt.problems.layout.geom_layouts """
[docs] def __init__( self, boundary, n_turbines, min_dist, max_dist=None, D=None, ): """ Constructor. Parameters ---------- boundary: foxes.utils.geom2d.AreaGeometry The boundary geometry n_turbines: int The number of turbines in the layout min_dist: float The minimal distance between points max_dist: float, optional The maximal distance between points D: float, optional The diameter of circle fully within boundary """ super().__init__(name="geom_reg_grid") self.boundary = boundary self.n_turbines = n_turbines self.min_dist = float(min_dist) self.max_dist = float(max_dist) if max_dist is not None else max_dist self.D = D self._SX = "sx" self._SY = "sy" self._DX = "dx" self._DY = "dy" self._ALPHA = "alpha"
[docs] def initialize(self, verbosity=1): """ Initialize the object. Parameters ---------- verbosity: int The verbosity level, 0 = silent """ super().initialize(verbosity) pmin = self.boundary.p_min() pmax = self.boundary.p_max() self._pc = 0.5 * (pmin + pmax) self._diag = np.linalg.norm(pmax - pmin) self.max_dist = self._diag if self.max_dist is None else self.max_dist self._nrow = ( int(np.maximum(self._diag / self.min_dist, np.sqrt(self.n_turbines) + 0.5)) + 3 ) if verbosity > 0: print(f"Grid data:") print(f" pmin = {pmin}") print(f" pmax = {pmax}") print(f" min dist = {self.min_dist}") print(f" max dist = {self.max_dist}") print(f" n row max = {self._nrow}") print(f" n max = {self._nrow**2}") self.apply_individual(self.initial_values_int(), self.initial_values_float())
[docs] def var_names_float(self): """ The names of float variables. Returns ------- names: list of str The names of the float variables """ return list(np.array([self._SX, self._SY, self._DX, self._DY, self._ALPHA]))
[docs] def initial_values_float(self): """ The initial values of the float variables. Returns ------- values: numpy.ndarray Initial float values, shape: (n_vars_float,) """ vals = np.zeros(5, dtype=config.dtype_double) vals[2:4] = self.min_dist return vals
[docs] def min_values_float(self): """ The minimal values of the float variables. Use -numpy.inf for unbounded. Returns ------- values: numpy.ndarray Minimal float values, shape: (n_vars_float,) """ vals = np.zeros(5, dtype=config.dtype_double) vals[:2] = -0.5 vals[2:4] = self.min_dist return vals
[docs] def max_values_float(self): """ The maximal values of the float variables. Use numpy.inf for unbounded. Returns ------- values: numpy.ndarray Maximal float values, shape: (n_vars_float,) """ vals = np.zeros(5, dtype=config.dtype_double) vals[:2] = 0.5 vals[2:4] = self.max_dist vals[4] = 90.0 return vals
[docs] def apply_individual(self, vars_int, vars_float): """ Apply new variables to the problem. Parameters ---------- vars_int: np.array The integer variable values, shape: (n_vars_int,) vars_float: np.array The float variable values, shape: (n_vars_float,) Returns ------- problem_results: Any The results of the variable application to the problem """ sx, sy, dx, dy, alpha = vars_float a = np.deg2rad(alpha) nax = np.stack([np.cos(a), np.sin(a)], axis=-1) nay = np.stack([-np.sin(a), np.cos(a)], axis=-1) pts = ( self._pc[None, None, :] + (np.arange(self._nrow)[:, None, None] - (self._nrow - 1) / 2 + sx) * dx * nax[None, None, :] + (np.arange(self._nrow)[None, :, None] - (self._nrow - 1) / 2 + sy) * dy * nay[None, None, :] ) pts = pts.reshape(self._nrow**2, 2) if self.D is None: valid = self.boundary.points_inside(pts) else: valid = self.boundary.points_inside(pts) & ( self.boundary.points_distance(pts) >= self.D / 2 ) nvl = np.sum(valid) if nvl >= self.n_turbines: return pts[valid][: self.n_turbines], np.ones(self.n_turbines, dtype=bool) else: qts = np.append(pts[valid], pts[~valid][: (self.n_turbines - nvl)], axis=0) vld = np.zeros(self.n_turbines, dtype=bool) vld[:nvl] = True return qts, vld
[docs] def apply_population(self, vars_int, vars_float): """ Apply new variables to the problem, for a whole population. Parameters ---------- vars_int: np.array The integer variable values, shape: (n_pop, n_vars_int) vars_float: np.array The float variable values, shape: (n_pop, n_vars_float) Returns ------- problem_results: Any The results of the variable application to the problem """ n_pop = vars_float.shape[0] sx = vars_float[:, 0] sy = vars_float[:, 1] dx = vars_float[:, 2] dy = vars_float[:, 3] alpha = vars_float[:, 4] a = np.deg2rad(alpha) nax = np.stack([np.cos(a), np.sin(a)], axis=-1) nay = np.stack([-np.sin(a), np.cos(a)], axis=-1) pts = ( self._pc[None, None, None, :] + ( np.arange(self._nrow)[None, :, None, None] - (self._nrow - 1) / 2 + sx[:, None, None, None] ) * dx[:, None, None, None] * nax[:, None, None, :] + ( np.arange(self._nrow)[None, None, :, None] - (self._nrow - 1) / 2 + sy[:, None, None, None] ) * dy[:, None, None, None] * nay[:, None, None, :] ) pts = pts.reshape(n_pop * self._nrow**2, 2) if self.D is None: valid = self.boundary.points_inside(pts) else: valid = self.boundary.points_inside(pts) & ( self.boundary.points_distance(pts) >= self.D / 2 ) valid = valid.reshape(n_pop, self._nrow**2) pts = pts.reshape(n_pop, self._nrow**2, 2) nvl = np.sum(valid, axis=1) qts = np.zeros((n_pop, self.n_turbines, 2), dtype=config.dtype_double) vld = np.zeros((n_pop, self.n_turbines), dtype=bool) for pi in range(n_pop): if nvl[pi] >= self.n_turbines: qts[pi] = pts[pi, valid[pi]][: self.n_turbines] vld[pi] = np.ones(self.n_turbines, dtype=bool) else: qts[pi] = np.append( pts[pi, valid[pi]], pts[pi, ~valid[pi]][: (self.n_turbines - nvl[pi])], axis=0, ) vld[pi, : nvl[pi]] = True return qts, vld
[docs] def get_fig( self, xy=None, valid=None, ax=None, title=None, true_circle=True, **bargs ): """ Return plotly figure axis. Parameters ---------- xy: numpy.ndarary, optional The xy coordinate array, shape: (n_points, 2) valid: numpy.ndarray, optional Boolean array of validity, shape: (n_points,) ax: pyplot.Axis, optional The figure axis title: str, optional The figure title true_circle: bool Draw points as circles with diameter self.D bars: dict, optional The boundary plot arguments Returns ------- ax: pyplot.Axis The figure axis """ if ax is None: __, ax = plt.subplots() hbargs = {"fill_mode": "inside_lightgray"} hbargs.update(bargs) self.boundary.add_to_figure(ax, **hbargs) if xy is not None: if valid is not None: xy = xy[valid] if not true_circle or self.D is None: ax.scatter(xy[:, 0], xy[:, 1], color="orange") else: for x, y in xy: ax.add_patch( plt.Circle((x, y), self.D / 2, color="blue", fill=True) ) ax.set_aspect("equal", adjustable="box") ax.set_xlabel("x [m]") ax.set_ylabel("y [m]") if title is None: if xy is None: title = f"Optimization area" else: l = len(xy) if xy is not None else 0 dists = cdist(xy, xy) np.fill_diagonal(dists, 1e20) title = f"N = {l}, min_dist = {np.min(dists):.1f} m" ax.set_title(title) return ax