Source code for foxes_opt.problems.layout.geom_layouts.geom_reggrids

import numpy as np
import matplotlib.pyplot as plt
from scipy.spatial.distance import cdist
from iwopy import Problem

from foxes.config import config


[docs] class GeomRegGrids(Problem): """ A regular grid within a boundary geometry. This optimization problem does not involve wind farms. Attributes ---------- boundary: foxes.utils.geom2d.AreaGeometry The boundary geometry min_dist: float The minimal distance between points n_grids: int The number of grids n_max: int The maximal number of points n_row_max: int The maximal number of points in a row max_dist: float The maximal distance between points D: float The diameter of circle fully within boundary :group: opt.problems.layout.geom_layouts """
[docs] def __init__( self, boundary, min_dist, n_grids, n_max=None, n_row_max=None, max_dist=None, D=None, ): """ Constructor. Parameters ---------- boundary: foxes.utils.geom2d.AreaGeometry The boundary geometry min_dist: float The minimal distance between points n_grids: int The number of grids n_max: int, optional The maximal number of points n_row_max: int, optional The maximal number of points in a row max_dist: float, optional The maximal distance between points D: float, optional The diameter of circle fully within boundary """ super().__init__(name="geom_reg_grids") self.boundary = boundary self.n_grids = n_grids self.n_max = n_max self.n_row_max = n_row_max self.min_dist = float(min_dist) self.max_dist = float(max_dist) if max_dist is not None else max_dist self.D = D self._NX = [f"nx{i}" for i in range(self.n_grids)] self._NY = [f"ny{i}" for i in range(self.n_grids)] self._OX = [f"ox{i}" for i in range(self.n_grids)] self._OY = [f"oy{i}" for i in range(self.n_grids)] self._DX = [f"dx{i}" for i in range(self.n_grids)] self._DY = [f"dy{i}" for i in range(self.n_grids)] self._ALPHA = [f"alpha{i}" for i in range(self.n_grids)]
[docs] def initialize(self, verbosity=1): """ Initialize the object. Parameters ---------- verbosity: int The verbosity level, 0 = silent """ super().initialize(verbosity) pmin = self.boundary.p_min() pmax = self.boundary.p_max() self._span = pmax - pmin self._diag = np.linalg.norm(self._span) self.max_dist = self._diag if self.max_dist is None else self.max_dist self._nrow = self.n_row_max if self.n_row_max is None: if self.n_max is None: self._nrow = int(self._diag / self.min_dist) if self._nrow * self.min_dist < self._diag: self._nrow += 1 self._nrow += 1 else: self._nrow = self.n_max if self.n_max is None: self.n_max = self.n_grids * self._nrow**2 elif self.n_max <= self._nrow: self._nrow = self.n_max self._pmin = pmin - self._diag - self.min_dist self._pmax = pmax + self.min_dist if verbosity > 0: print(f"Grid data:") print(f" pmin = {self._pmin}") print(f" pmax = {self._pmax}") print(f" min dist = {self.min_dist}") print(f" max dist = {self.max_dist}") print(f" n row max = {self._nrow}") print(f" n max = {self.n_max}") print(f" n grids = {self.n_grids}") self.apply_individual(self.initial_values_int(), self.initial_values_float())
[docs] def var_names_int(self): """ The names of int variables. Returns ------- names: list of str The names of the int variables """ return list(np.array([self._NX, self._NY]).T.flat)
[docs] def initial_values_int(self): """ The initial values of the int variables. Returns ------- values: numpy.ndarray Initial int values, shape: (n_vars_int,) """ return np.full(self.n_grids * 2, 2, dtype=config.dtype_int)
[docs] def min_values_int(self): """ The minimal values of the integer variables. Use -self.INT_INF for unbounded. Returns ------- values: numpy.ndarray Minimal int values, shape: (n_vars_int,) """ return np.ones(self.n_grids * 2, dtype=config.dtype_int)
[docs] def max_values_int(self): """ The maximal values of the integer variables. Use self.INT_INF for unbounded. Returns ------- values: numpy.ndarray Maximal int values, shape: (n_vars_int,) """ return np.full(self.n_grids * 2, self._nrow, dtype=config.dtype_int)
[docs] def var_names_float(self): """ The names of float variables. Returns ------- names: list of str The names of the float variables """ return list( np.array([self._OX, self._OY, self._DX, self._DY, self._ALPHA]).T.flat )
[docs] def initial_values_float(self): """ The initial values of the float variables. Returns ------- values: numpy.ndarray Initial float values, shape: (n_vars_float,) """ n = 5 vals = np.zeros((self.n_grids, n), dtype=config.dtype_double) vals[:, :2] = self._pmin + self._diag + self.min_dist + self._span / 2 vals[:, 2:4] = 2 * self.min_dist vals[:, 5:] = 0 return vals.reshape(self.n_grids * n)
[docs] def min_values_float(self): """ The minimal values of the float variables. Use -numpy.inf for unbounded. Returns ------- values: numpy.ndarray Minimal float values, shape: (n_vars_float,) """ n = 5 vals = np.zeros((self.n_grids, n), dtype=config.dtype_double) vals[:, :2] = self._pmin vals[:, 2:4] = self.min_dist vals[:, 5:] = -self._diag / 3 return vals.reshape(self.n_grids * n)
[docs] def max_values_float(self): """ The maximal values of the float variables. Use numpy.inf for unbounded. Returns ------- values: numpy.ndarray Maximal float values, shape: (n_vars_float,) """ n = 5 vals = np.zeros((self.n_grids, n), dtype=config.dtype_double) vals[:, :2] = self._pmax vals[:, 2:4] = self.max_dist vals[:, 4] = 90.0 vals[:, 5:] = self._diag / 3 return vals.reshape(self.n_grids * n)
[docs] def apply_individual(self, vars_int, vars_float): """ Apply new variables to the problem. Parameters ---------- vars_int: np.array The integer variable values, shape: (n_vars_int,) vars_float: np.array The float variable values, shape: (n_vars_float,) Returns ------- problem_results: Any The results of the variable application to the problem """ vint = vars_int.reshape(self.n_grids, 2) vflt = vars_float.reshape(self.n_grids, 5) nx = vint[:, 0] ny = vint[:, 1] ox = vflt[:, 0] oy = vflt[:, 1] dx = vflt[:, 2] dy = vflt[:, 3] a = np.deg2rad(vflt[:, 4]) s = vflt[:, 5:] n_points = self.n_max nax = np.stack([np.cos(a), np.sin(a), np.zeros_like(a)], axis=-1) naz = np.zeros_like(nax) naz[:, 2] = 1 nay = np.cross(naz, nax) valid = np.zeros(n_points, dtype=bool) pts = np.full((n_points, 2), np.nan, dtype=config.dtype_double) n0 = 0 for gi in range(self.n_grids): n = nx[gi] * ny[gi] n1 = n0 + n if n1 <= n_points: qts = pts[n0:n1].reshape(nx[gi], ny[gi], 2) else: qts = np.zeros((nx[gi], ny[gi], 2), dtype=config.dtype_double) qts[:, :, 0] = ox[gi] qts[:, :, 1] = oy[gi] qts[:] += ( np.arange(nx[gi])[:, None, None] * dx[gi] * nax[gi, None, None, :2] ) qts[:] += ( np.arange(ny[gi])[None, :, None] * dy[gi] * nay[gi, None, None, :2] ) qts = qts.reshape(n, 2) if n1 > n_points: n1 = n_points qts = qts[: (n1 - n0)] pts[n0:] = qts # set out of boundary points invalid: if self.D is None: valid[n0:n1] = self.boundary.points_inside(qts) else: valid[n0:n1] = self.boundary.points_inside(qts) & ( self.boundary.points_distance(qts) >= self.D / 2 ) # set points invalid which are too close to other grids: if n0 > 0: dists = cdist(qts, pts[:n0]) valid[n0:n1][np.any(dists < self.min_dist, axis=1)] = False n0 = n1 if n0 >= n_points: break return pts, valid
[docs] def apply_population(self, vars_int, vars_float): """ Apply new variables to the problem, for a whole population. Parameters ---------- vars_int: np.array The integer variable values, shape: (n_pop, n_vars_int) vars_float: np.array The float variable values, shape: (n_pop, n_vars_float) Returns ------- problem_results: Any The results of the variable application to the problem """ n_pop = vars_int.shape[0] vint = vars_int.reshape(n_pop, self.n_grids, 2) vflt = vars_float.reshape(n_pop, self.n_grids, 5) nx = vint[:, :, 0] ny = vint[:, :, 1] ox = vflt[:, :, 0] oy = vflt[:, :, 1] dx = vflt[:, :, 2] dy = vflt[:, :, 3] a = np.deg2rad(vflt[:, :, 4]) s = vflt[:, :, 5:] n_points = self.n_max nax = np.stack([np.cos(a), np.sin(a), np.zeros_like(a)], axis=-1) naz = np.zeros_like(nax) naz[:, :, 2] = 1 nay = np.cross(naz, nax) valid = np.zeros((n_pop, n_points), dtype=bool) pts = np.full((n_pop, n_points, 2), np.nan, dtype=config.dtype_double) for pi in range(n_pop): n0 = 0 for gi in range(self.n_grids): n = nx[pi, gi] * ny[pi, gi] n1 = n0 + n if n1 <= n_points: qts = pts[pi, n0:n1].reshape(nx[pi, gi], ny[pi, gi], 2) else: qts = np.zeros( (nx[pi, gi], ny[pi, gi], 2), dtype=config.dtype_double ) qts[:, :, 0] = ox[pi, gi] qts[:, :, 1] = oy[pi, gi] qts[:] += ( np.arange(nx[pi, gi])[:, None, None] * dx[pi, gi] * nax[pi, gi, None, None, :2] ) qts[:] += ( np.arange(ny[pi, gi])[None, :, None] * dy[pi, gi] * nay[pi, gi, None, None, :2] ) qts = qts.reshape(n, 2) if n1 > n_points: n1 = n_points qts = qts[: (n1 - n0)] pts[pi, n0:] = qts # set out of boundary points invalid: if self.D is None: valid[pi, n0:n1] = self.boundary.points_inside(qts) else: valid[pi, n0:n1] = self.boundary.points_inside(qts) & ( self.boundary.points_distance(qts) >= self.D / 2 ) # set points invalid which are too close to other grids: if n0 > 0: dists = cdist(qts, pts[pi, :n0]) valid[pi, n0:n1][np.any(dists < self.min_dist, axis=1)] = False n0 = n1 if n0 >= n_points: break return pts, valid
[docs] def get_fig( self, xy=None, valid=None, ax=None, title=None, true_circle=True, **bargs ): """ Return plotly figure axis. Parameters ---------- xy: numpy.ndarary, optional The xy coordinate array, shape: (n_points, 2) valid: numpy.ndarray, optional Boolean array of validity, shape: (n_points,) ax: pyplot.Axis, optional The figure axis title: str, optional The figure title true_circle: bool Draw points as circles with diameter self.D bars: dict, optional The boundary plot arguments Returns ------- ax: pyplot.Axis The figure axis """ if ax is None: __, ax = plt.subplots() hbargs = {"fill_mode": "inside_lightgray"} hbargs.update(bargs) self.boundary.add_to_figure(ax, **hbargs) if xy is not None: if valid is not None: xy = xy[valid] if not true_circle or self.D is None: ax.scatter(xy[:, 0], xy[:, 1], color="orange") else: for x, y in xy: ax.add_patch( plt.Circle((x, y), self.D / 2, color="blue", fill=True) ) ax.set_aspect("equal", adjustable="box") ax.set_xlabel("x [m]") ax.set_ylabel("y [m]") if title is None: if xy is None: title = f"Optimization area" else: l = len(xy) if xy is not None else 0 dists = cdist(xy, xy) np.fill_diagonal(dists, 1e20) title = f"N = {l}, min_dist = {np.min(dists):.1f} m" ax.set_title(title) return ax