Source code for foxes_opt.problems.layout.geom_layouts.objectives

import numpy as np
from iwopy import Objective
from scipy.spatial.distance import cdist

from foxes.config import config


[docs] class OMaxN(Objective): """ Maximal number of turbines objective for purely geometrical layouts problems. :group: opt.problems.layout.geom_layouts.objectives """
[docs] def __init__(self, problem, name="maxN"): """ Constructor. Parameters ---------- problem: foxes_opt.FarmOptProblem The underlying geometrical layout optimization problem name: str The constraint name """ super().__init__( problem, name, vnames_int=problem.var_names_int(), vnames_float=problem.var_names_float(), )
[docs] def n_components(self): """ Returns the number of components of the function. Returns ------- int: The number of components. """ return 1
[docs] def maximize(self): """ Returns flag for maximization of each component. Returns ------- flags: np.array Bool array for component maximization, shape: (n_components,) """ return [True]
[docs] def calc_individual(self, vars_int, vars_float, problem_results, cmpnts=None): """ Calculate values for a single individual of the underlying problem. Parameters ---------- vars_int : np.array The integer variable values, shape: (n_vars_int,) vars_float : np.array The float variable values, shape: (n_vars_float,) problem_results : Any The results of the variable application to the problem components : list of int, optional The selected components or None for all Returns ------- values : np.array The component values, shape: (n_sel_components,) """ __, valid = problem_results return np.sum(valid)
[docs] def calc_population(self, vars_int, vars_float, problem_results, cmpnts=None): """ Calculate values for all individuals of a population. Parameters ---------- vars_int : np.array The integer variable values, shape: (n_pop, n_vars_int) vars_float : np.array The float variable values, shape: (n_pop, n_vars_float) problem_results : Any The results of the variable application to the problem components : list of int, optional The selected components or None for all Returns ------- values : np.array The component values, shape: (n_pop, n_sel_components) """ __, valid = problem_results return np.sum(valid, axis=1)[:, None]
[docs] class OMinN(OMaxN): """ Minimal number of turbines objective for purely geometrical layouts problems. :group: opt.problems.layout.geom_layouts.objectives """
[docs] def __init__(self, problem, name="ominN"): """ Constructor. Parameters ---------- problem: foxes_opt.FarmOptProblem The underlying geometrical layout optimization problem name: str The constraint name """ super().__init__(problem, name)
[docs] def maximize(self): return [False]
[docs] class OFixN(Objective): """ Fixed number of turbines objective for purely geometrical layouts problems. :group: opt.problems.layout.geom_layouts.objectives """
[docs] def __init__(self, problem, N, name="ofixN"): """ Constructor. Parameters ---------- problem: foxes_opt.FarmOptProblem The underlying geometrical layout optimization problem N: int The number of turbines name: str The constraint name """ super().__init__( problem, name, vnames_int=problem.var_names_int(), vnames_float=problem.var_names_float(), ) self.N = N
[docs] def n_components(self): """ Returns the number of components of the function. Returns ------- int: The number of components. """ return 1
[docs] def maximize(self): """ Returns flag for maximization of each component. Returns ------- flags: np.array Bool array for component maximization, shape: (n_components,) """ return [False]
[docs] def calc_individual(self, vars_int, vars_float, problem_results, cmpnts=None): """ Calculate values for a single individual of the underlying problem. Parameters ---------- vars_int : np.array The integer variable values, shape: (n_vars_int,) vars_float : np.array The float variable values, shape: (n_vars_float,) problem_results : Any The results of the variable application to the problem components : list of int, optional The selected components or None for all Returns ------- values : np.array The component values, shape: (n_sel_components,) """ __, valid = problem_results N = np.sum(valid, dtype=np.float64) return np.maximum(N - self.N, self.N - N)
[docs] def calc_population(self, vars_int, vars_float, problem_results, cmpnts=None): """ Calculate values for all individuals of a population. Parameters ---------- vars_int : np.array The integer variable values, shape: (n_pop, n_vars_int) vars_float : np.array The float variable values, shape: (n_pop, n_vars_float) problem_results : Any The results of the variable application to the problem components : list of int, optional The selected components or None for all Returns ------- values : np.array The component values, shape: (n_pop, n_sel_components) """ __, valid = problem_results N = np.sum(valid, axis=1, dtype=np.float64)[:, None] return np.maximum(N - self.N, self.N - N)
[docs] class MaxGridSpacing(Objective): """ Maximal grid spacing objective for purely geometrical layouts problems. :group: opt.problems.layout.geom_layouts.objectives """
[docs] def __init__(self, problem, name="max_dxdy"): """ Constructor. Parameters ---------- problem: foxes_opt.FarmOptProblem The underlying geometrical layout optimization problem name: str The constraint name """ super().__init__( problem, name, vnames_int=problem.var_names_int(), vnames_float=problem.var_names_float(), )
[docs] def n_components(self): """ Returns the number of components of the function. Returns ------- int: The number of components. """ return 1
[docs] def maximize(self): """ Returns flag for maximization of each component. Returns ------- flags: np.array Bool array for component maximization, shape: (n_components,) """ return [True]
[docs] def calc_individual(self, vars_int, vars_float, problem_results, cmpnts=None): """ Calculate values for a single individual of the underlying problem. Parameters ---------- vars_int : np.array The integer variable values, shape: (n_vars_int,) vars_float : np.array The float variable values, shape: (n_vars_float,) problem_results : Any The results of the variable application to the problem components : list of int, optional The selected components or None for all Returns ------- values : np.array The component values, shape: (n_sel_components,) """ vflt = vars_float.reshape(self.problem.n_grids, 5) delta = np.minimum(vflt[:, 2], vflt[:, 3]) return np.nanmin(delta)
[docs] def calc_population(self, vars_int, vars_float, problem_results, cmpnts=None): """ Calculate values for all individuals of a population. Parameters ---------- vars_int : np.array The integer variable values, shape: (n_pop, n_vars_int) vars_float : np.array The float variable values, shape: (n_pop, n_vars_float) problem_results : Any The results of the variable application to the problem components : list of int, optional The selected components or None for all Returns ------- values : np.array The component values, shape: (n_pop, n_sel_components) """ n_pop = vars_float.shape[0] vflt = vars_float.reshape(n_pop, self.problem.n_grids, 5) delta = np.minimum(vflt[:, :, 2], vflt[:, :, 3]) return np.nanmin(delta, axis=1)[:, None]
[docs] class MaxDensity(Objective): """ Maximal turbine density objective for purely geometrical layouts problems. :group: opt.problems.layout.geom_layouts.objectives """
[docs] def __init__(self, problem, dfactor=1, min_dist=None, name="max_density"): """ Constructor. Parameters ---------- problem: foxes_opt.FarmOptProblem The underlying geometrical layout optimization problem dfactor: float Delta factor for grid spacing min_dist: float, optional The minimal distance name: str The constraint name """ super().__init__( problem, name, vnames_int=problem.var_names_int(), vnames_float=problem.var_names_float(), ) self.dfactor = dfactor self.min_dist = problem.min_dist if min_dist is None else min_dist
[docs] def n_components(self): """ Returns the number of components of the function. Returns ------- int: The number of components. """ return 1
[docs] def maximize(self): """ Returns flag for maximization of each component. Returns ------- flags: np.array Bool array for component maximization, shape: (n_components,) """ return [False]
[docs] def initialize(self, verbosity): """ Initialize the object. Parameters ---------- verbosity: int The verbosity level, 0 = silent """ super().initialize(verbosity) # define regular grid of probe points: geom = self.problem.boundary pmin = geom.p_min() pmax = geom.p_max() detlta = self.min_dist / self.dfactor self._probes = np.stack( np.meshgrid( np.arange(pmin[0] - detlta, pmax[0] + 2 * detlta, detlta), np.arange(pmin[1] - detlta, pmax[1] + 2 * detlta, detlta), indexing="ij", ), axis=-1, ) nx, ny = self._probes.shape[:2] n = nx * ny self._probes = self._probes.reshape(n, 2) # reduce to points within geometry: valid = geom.points_inside(self._probes) self._probes = self._probes[valid]
[docs] def calc_individual(self, vars_int, vars_float, problem_results, cmpnts=None): """ Calculate values for a single individual of the underlying problem. Parameters ---------- vars_int : np.array The integer variable values, shape: (n_vars_int,) vars_float : np.array The float variable values, shape: (n_vars_float,) problem_results : Any The results of the variable application to the problem components : list of int, optional The selected components or None for all Returns ------- values : np.array The component values, shape: (n_sel_components,) """ xy, valid = problem_results xy = xy[valid] dists = cdist(self._probes, xy) return np.nanmax(np.nanmin(dists, axis=1))
[docs] def calc_population(self, vars_int, vars_float, problem_results, cmpnts=None): """ Calculate values for all individuals of a population. Parameters ---------- vars_int : np.array The integer variable values, shape: (n_pop, n_vars_int) vars_float : np.array The float variable values, shape: (n_pop, n_vars_float) problem_results : Any The results of the variable application to the problem components : list of int, optional The selected components or None for all Returns ------- values : np.array The component values, shape: (n_pop, n_sel_components) """ n_pop = vars_float.shape[0] xy, valid = problem_results out = np.full(n_pop, 1e20, dtype=config.dtype_double) for pi in range(n_pop): if np.any(valid[pi]): hxy = xy[pi][valid[pi]] dists = cdist(self._probes, hxy) out[pi] = np.nanmax(np.nanmin(dists, axis=1)) return out[:, None]
[docs] class MeMiMaDist(Objective): """ Mean-min-max distance objective for purely geometrical layouts problems. :group: opt.problems.layout.geom_layouts.objectives """
[docs] def __init__(self, problem, scale=500.0, c1=1, c2=1, c3=1, name="MiMaMean"): """ Constructor. Parameters ---------- problem: foxes_opt.FarmOptProblem The underlying geometrical layout optimization problem scale: float The distance scale c1: float Parameter for mean weighting c2: float Parameter for max diff weighting c3: float Parameter for min diff weighting name: str The constraint name """ super().__init__( problem, name, vnames_int=problem.var_names_int(), vnames_float=problem.var_names_float(), ) self.scale = scale self.c1 = c1 self.c2 = c2 self.c3 = c3
[docs] def n_components(self): """ Returns the number of components of the function. Returns ------- int: The number of components. """ return 1
[docs] def maximize(self): """ Returns flag for maximization of each component. Returns ------- flags: np.array Bool array for component maximization, shape: (n_components,) """ return [True]
[docs] def calc_individual(self, vars_int, vars_float, problem_results, cmpnts=None): """ Calculate values for a single individual of the underlying problem. Parameters ---------- vars_int : np.array The integer variable values, shape: (n_vars_int,) vars_float : np.array The float variable values, shape: (n_vars_float,) problem_results : Any The results of the variable application to the problem components : list of int, optional The selected components or None for all Returns ------- values : np.array The component values, shape: (n_sel_components,) """ xy, valid = problem_results # xy = xy[valid] dists = cdist(xy, xy) np.fill_diagonal(dists, np.inf) dists = np.min(dists, axis=1) / self.scale / len(xy) mean = np.average(dists) mi = np.min(dists) ma = np.max(dists) return np.atleast_1d( self.c1 * mean**2 - self.c2 * (mean - mi) ** 2 - self.c3 * (mean - ma) ** 2 )
[docs] def calc_population(self, vars_int, vars_float, problem_results, cmpnts=None): """ Calculate values for all individuals of a population. Parameters ---------- vars_int : np.array The integer variable values, shape: (n_pop, n_vars_int) vars_float : np.array The float variable values, shape: (n_pop, n_vars_float) problem_results : Any The results of the variable application to the problem components : list of int, optional The selected components or None for all Returns ------- values : np.array The component values, shape: (n_pop, n_sel_components) """ xy, valid = problem_results n_pop, n_xy = xy.shape[:2] out = np.zeros((n_pop, 1), dtype=config.dtype_double) for pi in range(n_pop): hxy = xy[pi] # , valid[pi]] dists = cdist(hxy, hxy) np.fill_diagonal(dists, np.inf) dists = np.min(dists, axis=1) / self.scale / n_xy mean = np.average(dists) mi = np.min(dists) ma = np.max(dists) out[pi, 0] = ( self.c1 * mean**2 - self.c2 * (mean - mi) ** 2 - self.c3 * (mean - ma) ** 2 ) return out