Source code for foxes_opt.problems.layout.regular_layout

import numpy as np
from copy import deepcopy

from foxes_opt.core import FarmVarsProblem, FarmOptProblem
from foxes.models.turbine_models import Calculator
from foxes.config import config
import foxes.variables as FV
import foxes.constants as FC


[docs] class RegularLayoutOptProblem(FarmVarsProblem): """ Places turbines on a regular grid and optimizes its parameters. Attributes ---------- min_spacing: float The minimal turbine spacing :group: opt.problems.layout """ SPACING_X = "spacing_x" SPACING_Y = "spacing_y" OFFSET_X = "offset_X" OFFSET_Y = "offset_Y" ANGLE = "angle"
[docs] def __init__( self, name, algo, min_spacing, **kwargs, ): """ Constructor. Parameters ---------- name: str The problem's name algo: foxes.core.Algorithm The algorithm min_spacing: float The minimal turbine spacing kwargs: dict, optional Additional parameters for `FarmVarsProblem` """ super().__init__(name, algo, **kwargs) self.min_spacing = min_spacing
[docs] def initialize(self, verbosity=1, **kwargs): """ Initialize the object. Parameters ---------- verbosity: int The verbosity level, 0 = silent kwargs: dict, optional Additional parameters for super class init """ self._mname = self.name + "_calc" for t in self.algo.farm.turbines: if self._mname not in t.models: t.models.append(self._mname) self._turbine = deepcopy(self.farm.turbines[-1]) self.algo.mbook.turbine_models[self._mname] = Calculator( in_vars=[FC.VALID, FV.P, FV.CT], out_vars=[FC.VALID, FV.P, FV.CT], func=lambda valid, P, ct, st_sel: (valid, P * valid, ct * valid), pre_rotor=False, ) b = self.farm.boundary assert b is not None, f"Problem '{self.name}': Missing wind farm boundary." pmax = b.p_max() pmin = b.p_min() self._pmin = pmin self._xy0 = 0.5 * (pmin + pmax) self._halfspan = (pmax - pmin) / 2 self._halflen = np.linalg.norm(self._halfspan) self.max_spacing = 2 * (self._halflen + self.min_spacing) self._halfn = int(self._halflen / self.min_spacing) if self._halfn * self.min_spacing < self._halflen: self._halfn += 1 self._nrow = 2 * self._halfn + 1 self._nturb = self._nrow**2 if verbosity > 0: print(f"Problem '{self.name}':") print(f" xy0 = {self._xy0}") print(f" span = {np.linalg.norm(self._halfspan*2):.2f}") print(f" min spacing = {self.min_spacing:.2f}") print(f" max spacing = {self.max_spacing:.2f}") print(f" n row turbns = {self._nrow}") print(f" n turbines = {self._nturb}") print(f" turbine mdls = {self._turbine.models}") if self.farm.n_turbines < self._nturb: for i in range(self._nturb - self.farm.n_turbines): ti = len(self.farm.turbines) self.farm.turbines.append(deepcopy(self._turbine)) self.farm.turbines[-1].index = ti self.farm.turbines[-1].name = f"T{ti}" elif self.farm.n_turbines > self._nturb: self.farm.turbines = self.farm.turbines[: self._nturb] self.algo.n_turbines = self._nturb super().initialize( pre_rotor_vars=[FV.X, FV.Y, FC.VALID], post_rotor_vars=[], verbosity=verbosity, **kwargs, )
[docs] def var_names_float(self): """ The names of float variables. Returns ------- names: list of str The names of the float variables """ return [ self.SPACING_X, self.SPACING_Y, self.OFFSET_X, self.OFFSET_Y, self.ANGLE, ]
[docs] def initial_values_float(self): """ The initial values of the float variables. Returns ------- values: numpy.ndarray Initial float values, shape: (n_vars_float,) """ return [self.min_spacing, self.min_spacing, 0.0, 0.0, 0.0]
[docs] def min_values_float(self): """ The minimal values of the float variables. Use -numpy.inf for unbounded. Returns ------- values: numpy.ndarray Minimal float values, shape: (n_vars_float,) """ return [ self.min_spacing, self.min_spacing, -self._halfspan[0] - self.min_spacing, -self._halfspan[1] - self.min_spacing, 0.0, ]
[docs] def max_values_float(self): """ The maximal values of the float variables. Use numpy.inf for unbounded. Returns ------- values: numpy.ndarray Maximal float values, shape: (n_vars_float,) """ return [ self.max_spacing, self.max_spacing, self._halfspan[0] + self.min_spacing, self._halfspan[1] + self.min_spacing, 90.0, ]
[docs] def opt2farm_vars_individual(self, vars_int, vars_float): """ Translates optimization variables to farm variables Parameters ---------- vars_int: numpy.ndarray The integer optimization variable values, shape: (n_vars_int,) vars_float: numpy.ndarray The float optimization variable values, shape: (n_vars_float,) Returns ------- farm_vars: dict The foxes farm variables. Key: var name, value: numpy.ndarray with values, shape: (n_states, n_sel_turbines) """ dx, dy, ox, oy, a = vars_float n_states = self.algo.n_states nx = self._nrow ny = self._nrow a = np.deg2rad(a) nax = np.array([np.cos(a), np.sin(a), 0.0], dtype=config.dtype_double) nay = np.cross(np.array([0.0, 0.0, 1.0], dtype=config.dtype_double), nax) x0 = self._xy0 + np.array([ox, oy], dtype=config.dtype_double) pts = np.zeros((n_states, nx, ny, 2), dtype=config.dtype_double) pts[:] = ( x0[None, None, None, :] + np.arange(nx)[None, :, None, None] * dx * nax[None, None, None, :2] + np.arange(ny)[None, None, :, None] * dy * nay[None, None, None, :2] ) pts = pts.reshape(n_states, nx * ny, 2) valid = self.farm.boundary.points_inside(pts.reshape(n_states * nx * ny, 2)) farm_vars = { FV.X: pts[:, :, 0], FV.Y: pts[:, :, 1], FC.VALID: valid.reshape(n_states, nx * ny).astype(config.dtype_double), } return farm_vars
[docs] def opt2farm_vars_population(self, vars_int, vars_float, n_states): """ Translates optimization variables to farm variables Parameters ---------- vars_int: numpy.ndarray The integer optimization variable values, shape: (n_pop, n_vars_int) vars_float: numpy.ndarray The float optimization variable values, shape: (n_pop, n_vars_float) n_states: int The number of original (non-pop) states Returns ------- farm_vars: dict The foxes farm variables. Key: var name, value: numpy.ndarray with values, shape: (n_pop, n_states, n_sel_turbines) """ n_pop = len(vars_float) n_turbines = self.farm.n_turbines dx = vars_float[:, 0] dy = vars_float[:, 1] ox = vars_float[:, 2] oy = vars_float[:, 3] nx = self._nrow ny = self._nrow a = vars_float[:, 4] N = self._nturb a = np.deg2rad(a) nax = np.stack([np.cos(a), np.sin(a), np.zeros_like(a)], axis=-1) naz = np.zeros_like(nax) naz[..., 2] = 1 nay = np.cross(naz, nax) pts = np.zeros((n_pop, n_states, nx, ny, 2), dtype=config.dtype_double) pts[:] = self._xy0[None, None, None, None, :] pts[..., 0] += ox[:, None, None, None] pts[..., 1] += oy[:, None, None, None] pts[:] += ( np.arange(nx)[None, None, :, None, None] * dx[:, None, None, None, None] * nax[:, None, None, None, :2] + np.arange(ny)[None, None, None, :, None] * dy[:, None, None, None, None] * nay[:, None, None, None, :2] ) qts = np.zeros((n_pop, n_states, n_turbines, 2)) qts[:, :N] = pts.reshape(n_pop, n_states, N, 2) del pts valid = self.farm.boundary.points_inside( qts.reshape(n_pop * n_states * n_turbines, 2) ) farm_vars = { FV.X: qts[:, :, :, 0], FV.Y: qts[:, :, :, 1], FC.VALID: valid.reshape(n_pop, n_states, n_turbines).astype( config.dtype_double ), } return farm_vars
[docs] def finalize_individual(self, vars_int, vars_float, verbosity=1): """ Finalization, given the champion data. Parameters ---------- vars_int: np.array The optimal integer variable values, shape: (n_vars_int,) vars_float: np.array The optimal float variable values, shape: (n_vars_float,) verbosity: int The verbosity level, 0 = silent Returns ------- problem_results: Any The results of the variable application to the problem objs: np.array The objective function values, shape: (n_objectives,) cons: np.array The constraints values, shape: (n_constraints,) """ farm_vars = self.opt2farm_vars_individual(vars_int, vars_float) sel = np.where(farm_vars[FC.VALID][0])[0] x = farm_vars[FV.X][0, sel] y = farm_vars[FV.Y][0, sel] self.farm.turbines = [t for i, t in enumerate(self.farm.turbines) if i in sel] for i, t in enumerate(self.farm.turbines): t.xy = np.array([x[i], y[i]], dtype=config.dtype_double) t.models = [m for m in t.models if m not in [self.name, self._mname]] t.index = i t.name = f"T{i}" self.algo.update_n_turbines() return FarmOptProblem.finalize_individual( self, vars_int, vars_float, verbosity=1 )