Source code for foxes_opt.problems.opt_farm_vars

import numpy as np
import pandas as pd

from foxes_opt.core import FarmVarsProblem
from foxes.models.turbine_models import SetFarmVars
from foxes.config import config


[docs] class OptFarmVars(FarmVarsProblem): """ Optimize a selection of farm variables. :group: opt.problems """
[docs] def __init__(self, *args, **kwargs): """ Constructor. Parameters ---------- args: tuple, optional Arguments for `FarmVarsProblem` kwargs: dict, optional Keyword arguments for `FarmVarsProblem` """ super().__init__(*args, **kwargs) self._vars = None
[docs] def add_var( self, name, typ, init, min, max, level="uniform", sel=None, pre_rotor=False, model_key=None, ): """ Add a variable. Parameters ---------- name: str The foxes farm variable name typ: type The variable type, either float or int init: float or int The initial value min: float or int The min value max: float or int The max value level: str Choices: uniform, state, turbine, state-turbine sel: numpy.ndarray, optional States/turbines/state-turbine selection, depending on the level pre_rotor: bool Apply this variable before rotor model model_key: str, optional Creates sub-model which can then be placed in the turbine model list. Repeated keys are added to the same turbine model """ if typ is not float and typ is not int: raise TypeError( f"Problem '{self.name}': Expecting float or int, got type '{type(typ).__name__}'" ) mname = self.name if model_key is None else model_key if mname in self.algo.mbook.turbine_models: m = self.algo.mbook.turbine_models[mname] if not isinstance(m, SetFarmVars): raise KeyError( f"Problem '{self.name}': Turbine model entry '{mname}' already exists in model book, and is not of type SetFarmVars" ) elif m.pre_rotor != pre_rotor: raise ValueError( f"Problem '{self.name}': Turbine model entry '{mname}' exists in model book, and disagrees on pre_rotor = {pre_rotor}" ) else: self.algo.mbook.turbine_models[mname] = SetFarmVars(pre_rotor=pre_rotor) if self._vars is None: i0 = 0 i0i = 0 i0f = 0 else: if name in self._vars["var"].tolist(): raise ValueError( f"Problem '{self.name}': Attempt to add variable '{name}' twice" ) i0 = len(self._vars.index) grps = self._vars.groupby("type") i0i = len(grps.get_group("int").index) if "int" in grps.groups.keys() else 0 i0f = ( len(grps.get_group("float").index) if "float" in grps.groups.keys() else 0 ) del grps if level == "uniform": hdata = pd.DataFrame(index=[i0]) hdata.loc[i0, "name"] = name hdata.loc[i0, "var"] = name hdata.loc[i0, "type"] = "int" if typ is int else "float" hdata.loc[i0, "index"] = i0i if typ is int else i0f hdata.loc[i0, "level"] = level hdata.loc[i0, "state"] = -1 hdata.loc[i0, "turbine"] = -1 hdata.loc[i0, "sel_turbine"] = -1 hdata.loc[i0, "init"] = np.array([init], dtype=config.dtype_double) hdata.loc[i0, "min"] = np.array([min], dtype=config.dtype_double) hdata.loc[i0, "max"] = np.array([max], dtype=config.dtype_double) hdata.loc[i0, "pre_rotor"] = pre_rotor hdata.loc[i0, "model_key"] = mname elif level == "state": if not self.algo.initialized: self.algo.initialize() states = np.arange(self.algo.n_states) if sel is not None: states = states[sel] inds = i0 + np.arange(len(states)) tinds = inds - i0 + i0i if typ is int else inds - i0 + i0f hdata = pd.DataFrame(index=inds) hdata.loc[inds, "name"] = [f"{name}_{i:05d}" for i in range(len(states))] hdata.loc[inds, "var"] = name hdata.loc[inds, "type"] = "int" if typ is int else "float" hdata.loc[inds, "index"] = tinds hdata.loc[inds, "level"] = level hdata.loc[inds, "state"] = states hdata.loc[inds, "turbine"] = -1 hdata.loc[inds, "sel_turbine"] = -1 for c, d in [("init", init), ("min", min), ("max", max)]: data = np.full(len(inds), np.nan, dtype=config.dtype_double) data[:] = d hdata.loc[inds, c] = data hdata.loc[inds, "pre_rotor"] = pre_rotor hdata.loc[inds, "model_key"] = mname elif level == "turbine": if sel is None: turbines = self.sel_turbines else: turbines = np.arange(self.algo.n_turbines)[sel] inds = i0 + np.arange(len(turbines)) tinds = inds - i0 + i0i if typ is int else inds - i0 + i0f hdata = pd.DataFrame(index=inds) hdata.loc[inds, "name"] = [f"{name}_{i:04d}" for i in range(len(turbines))] hdata.loc[inds, "var"] = name hdata.loc[inds, "type"] = "int" if typ is int else "float" hdata.loc[inds, "index"] = tinds hdata.loc[inds, "level"] = level hdata.loc[inds, "state"] = -1 hdata.loc[inds, "turbine"] = turbines hdata.loc[inds, "sel_turbine"] = [ self.sel_turbines.index(ti) for ti in turbines ] for c, d in [("init", init), ("min", min), ("max", max)]: data = np.full(len(inds), np.nan, dtype=config.dtype_double) data[:] = d hdata.loc[inds, c] = data hdata.loc[inds, "pre_rotor"] = pre_rotor hdata.loc[inds, "model_key"] = mname elif level == "state-turbine": if not self.algo.initialized: self.algo.initialize() n_states = self.algo.n_states n_turbines = self.algo.n_turbines if sel is None: sel = np.zeros((n_states, n_turbines), dtype=bool) sel[:, self.sel_turbines] = True else: sel = np.array(sel, dtype=bool) st = np.arange(n_states * n_turbines).reshape(n_states, n_turbines)[sel] whr = np.where(sel) n_inds = len(st) inds = i0 + np.arange(n_inds) tinds = inds - i0 + i0i if typ is int else inds - i0 + i0f hdata = pd.DataFrame(index=inds) hdata.loc[inds, "name"] = [ f"{name}_{whr[0][i]:05d}_{whr[1][i]:04d}" for i in range(len(st)) ] hdata.loc[inds, "var"] = name hdata.loc[inds, "type"] = "int" if typ is int else "float" hdata.loc[inds, "index"] = tinds hdata.loc[inds, "level"] = level hdata.loc[inds, "state"] = whr[0] hdata.loc[inds, "turbine"] = whr[1] hdata.loc[inds, "sel_turbine"] = [ self.sel_turbines.index(ti) for ti in whr[1] ] for c, d in [("init", init), ("min", min), ("max", max)]: data = np.full(n_inds, np.nan, dtype=config.dtype_double) if isinstance(d, np.ndarray) and len(d.shape) > 1: data[:] = d[sel] else: data[:] = d hdata.loc[inds, c] = data hdata.loc[inds, "pre_rotor"] = pre_rotor hdata.loc[inds, "model_key"] = mname else: raise ValueError( f"Problem '{self.name}': Unknown level '{level}'. Choices: uniform, state, turbine, state-turbine" ) if self._vars is None: self._vars = hdata else: self._vars = pd.concat([self._vars, hdata], axis=0) icols = ["index", "state", "turbine", "sel_turbine"] for c in icols: self._vars[c] = self._vars[c].astype(config.dtype_int)
[docs] def initialize(self, verbosity=1, **kwargs): """ Initialize the object. Parameters ---------- verbosity: int The verbosity level, 0 = silent kwargs: dict, optional Additional parameters for super class init """ if self._vars is None: raise ValueError( f"Problem '{self.name}': No variables added for optimization." ) if verbosity > 0: print(f"Problem '{self.name}': Optimization variable list") print() print(self._vars) print() prev = {} postv = {} for (mname, pre), g in self._vars.groupby(["model_key", "pre_rotor"]): if (pre and mname in postv) or (not pre and mname in prev): raise ValueError( f"Problem '{self.name}': Model '{mname}' reveived both pre_rotor and non-pre_rotor variables" ) tg = prev if pre else postv if mname not in tg: tg[mname] = set(g["var"].tolist()) else: tg[mname] = tg[mname].update(g["var"].tolist()) super().initialize( pre_rotor_vars={mname: list(vrs) for mname, vrs in prev.items()}, post_rotor_vars={mname: list(vrs) for mname, vrs in postv.items()}, verbosity=verbosity, **kwargs, )
[docs] def var_names_int(self): """ The names of int variables. Returns ------- names: list of str The names of the int variables """ if self._vars is None: raise ValueError( f"Problem '{self.name}': No variables added for optimization." ) grps = self._vars.groupby("type") if "int" not in grps.groups.keys(): return [] else: return grps.get_group("int")["name"].tolist()
[docs] def initial_values_int(self): """ The initial values of the int variables. Returns ------- values: numpy.ndarray Initial int values, shape: (n_vars_int,) """ if self._vars is None: raise ValueError( f"Problem '{self.name}': No variables added for optimization." ) grps = self._vars.groupby("type") if "int" not in grps.groups.keys(): return [] else: return grps.get_group("int")["init"].to_numpy(config.dtype_int)
[docs] def min_values_int(self): """ The minimal values of the integer variables. Use -self.INT_INF for unbounded. Returns ------- values: numpy.ndarray Minimal int values, shape: (n_vars_int,) """ if self._vars is None: raise ValueError( f"Problem '{self.name}': No variables added for optimization." ) grps = self._vars.groupby("type") if "int" not in grps.groups.keys(): return [] else: return grps.get_group("int")["min"].to_numpy(config.dtype_int)
[docs] def max_values_int(self): """ The maximal values of the integer variables. Use self.INT_INF for unbounded. Returns ------- values: numpy.ndarray Maximal int values, shape: (n_vars_int,) """ if self._vars is None: raise ValueError( f"Problem '{self.name}': No variables added for optimization." ) grps = self._vars.groupby("type") if "int" not in grps.groups.keys(): return [] else: return grps.get_group("int")["max"].to_numpy(config.dtype_int)
[docs] def var_names_float(self): """ The names of float variables. Returns ------- names: list of str The names of the float variables """ if self._vars is None: raise ValueError( f"Problem '{self.name}': No variables added for optimization." ) grps = self._vars.groupby("type") if "float" not in grps.groups.keys(): return [] else: return grps.get_group("float")["name"].tolist()
[docs] def initial_values_float(self): """ The initial values of the float variables. Returns ------- values: numpy.ndarray Initial float values, shape: (n_vars_float,) """ if self._vars is None: raise ValueError( f"Problem '{self.name}': No variables added for optimization." ) grps = self._vars.groupby("type") if "float" not in grps.groups.keys(): return [] else: return grps.get_group("float")["init"].to_numpy(config.dtype_double)
[docs] def min_values_float(self): """ The minimal values of the float variables. Use -numpy.inf for unbounded. Returns ------- values: numpy.ndarray Minimal float values, shape: (n_vars_float,) """ if self._vars is None: raise ValueError( f"Problem '{self.name}': No variables added for optimization." ) grps = self._vars.groupby("type") if "float" not in grps.groups.keys(): return [] else: return grps.get_group("float")["min"].to_numpy(config.dtype_double)
[docs] def max_values_float(self): """ The maximal values of the float variables. Use numpy.inf for unbounded. Returns ------- values: numpy.ndarray Maximal float values, shape: (n_vars_float,) """ if self._vars is None: raise ValueError( f"Problem '{self.name}': No variables added for optimization." ) grps = self._vars.groupby("type") if "float" not in grps.groups.keys(): return [] else: return grps.get_group("float")["max"].to_numpy(config.dtype_double)
[docs] def opt2farm_vars_individual(self, vars_int, vars_float): """ Translates optimization variables to farm variables Parameters ---------- vars_int: numpy.ndarray The integer optimization variable values, shape: (n_vars_int,) vars_float: numpy.ndarray The float optimization variable values, shape: (n_vars_float,) Returns ------- farm_vars: dict The foxes farm variables. Key: var name, value: numpy.ndarray with values, shape: (n_states, n_sel_turbines) """ n_states = self.algo.n_states n_sturb = self.n_sel_turbines farm_vars = {} grps = self._vars.groupby(["type", "var", "level"]) for (typ, var, level), g in grps: src = vars_int if typ == "int" else vars_float i0 = g.index[0] i1 = g.index[-1] data = src[np.s_[i0 : i1 + 1]] if level == "uniform": farm_vars[var] = np.full( (n_states, n_sturb), data[0], dtype=config.dtype_double ) elif level == "state": farm_vars[var] = np.full( (n_states, n_sturb), np.nan, dtype=config.dtype_double ) if np.all(g["state"] == np.arange(n_states)): farm_vars[var][:] = data[:, None] else: farm_vars[var][g["state"]] = data[:, None] elif level == "turbine": farm_vars[var] = np.full( (n_states, n_sturb), np.nan, dtype=config.dtype_double ) if np.all(g["sel_turbine"] == np.arange(n_sturb)): farm_vars[var][:] = data[None, :] else: farm_vars[var][:, g["sel_turbine"]] = data[None, :] elif level == "state-turbine": farm_vars[var] = np.full( (n_states, n_sturb), np.nan, dtype=config.dtype_double ) farm_vars[var][g["state"], g["sel_turbine"]] = data else: raise ValueError( f"Problem '{self.name}': Unknown level '{level}' encountered for variable '{var}'. Valid choices: uniform, state, turbine, state-turbine" ) return farm_vars
[docs] def opt2farm_vars_population(self, vars_int, vars_float, n_states): """ Translates optimization variables to farm variables Parameters ---------- vars_int: numpy.ndarray The integer optimization variable values, shape: (n_pop, n_vars_int) vars_float: numpy.ndarray The float optimization variable values, shape: (n_pop, n_vars_float) n_states: int The number of original (non-pop) states Returns ------- farm_vars: dict The foxes farm variables. Key: var name, value: numpy.ndarray with values, shape: (n_pop, n_states, n_sel_turbines) """ n_pop = vars_float.shape[0] n_sturb = self.n_sel_turbines farm_vars = {} grps = self._vars.groupby(["type", "var", "level"]) for (typ, var, level), g in grps: src = vars_int if typ == "int" else vars_float i0 = g.index[0] i1 = g.index[-1] data = src[:, np.s_[i0 : i1 + 1]] if level == "uniform": farm_vars[var] = np.full( (n_pop, n_states, n_sturb), np.nan, dtype=config.dtype_double ) farm_vars[var][:] = data[:, 0, None, None] elif level == "state": farm_vars[var] = np.full( (n_pop, n_states, n_sturb), np.nan, dtype=config.dtype_double ) if np.all(g["state"] == np.arange(n_states)): farm_vars[var][:] = data[:, :, None] else: farm_vars[var][:, g["state"]] = data[:, :, None] elif level == "turbine": farm_vars[var] = np.full( (n_pop, n_states, n_sturb), np.nan, dtype=config.dtype_double ) if np.all(g["sel_turbine"] == np.arange(n_sturb)): farm_vars[var][:] = data[:, None, :] else: farm_vars[var][:, :, g["sel_turbine"]] = data[:, None, :] elif level == "state-turbine": farm_vars[var] = np.full( (n_pop, n_states, n_sturb), np.nan, dtype=config.dtype_double ) farm_vars[var][:, g["state"], g["sel_turbine"]] = data else: raise ValueError( f"Problem '{self.name}': Unknown level '{level}' encountered for variable '{var}'. Valid choices: uniform, state, turbine, state-turbine" ) return farm_vars