Wake steering

This example demonstrates how to optimize the yaw angles of wind turbine rotors, such that the wakes are steered away from downwind turbines.

In [1]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import foxes
import foxes.variables as FV
from iwopy.interfaces.pymoo import Optimizer_pymoo
from foxes_opt.problems import OptFarmVars
from foxes_opt.objectives import MaxFarmPower

Let’s initialize the foxes engine, which will be used for all calculations:

In [2]:
engine = foxes.Engine.new(
    "process",
    chunk_size_states=500,
    chunk_size_points=5000,
    verbosity=0,
)
engine.initialize()

In this example we are looking at a small 3 x 3 regualar wind farm with NREL5MW turbines:

In [3]:
farm = foxes.WindFarm()
foxes.input.farm_layout.add_grid(
    farm,
    xy_base=np.array([500.0, 500.0]),
    step_vectors=np.array([[1300.0, 0], [200, 600.0]]),
    steps=(3, 3),
    turbine_models=["opt_yawm", "yawm2yaw", "NREL5MW"],
    verbosity=0,
)

ax = foxes.output.FarmLayoutOutput(farm).get_figure()
plt.show()
plt.close(ax.get_figure())
../_images/notebooks_wake_steering_5_0.png

Notice how the name of the optimization model opt_yawm, which will be defined shortly, appears in the list of turbine models. The idea is as follows:

  • First, the optimizer sets the FV.YAWM variable, representing yaw misalignment in degrees, i.e., a delta yaw value from greedy conditions

  • Then, the model yawm2yaw translates this into the absolute yaw value, i.e., the absolute turbine axis orientation, expressed in degrees

  • This setting is then used for thrust and power calculations, by the turbine type model NREL5MW.

We are considering sinlge-state uniform inflow conditions:

In [4]:
states = foxes.input.states.SingleStateStates(ws=9, wd=270, ti=0.06, rho=1.225)

The algorithm is defined next, including a TI wake model and the Bastankhah2016 wake model. Also notice the wake frame choice yawed, which realizes the wake bending for yawed conditions:

In [5]:
algo = foxes.algorithms.Downwind(
    farm,
    states,
    rotor_model="grid25",
    wake_models=["IECTI2019k_quadratic_ambka02", "Bastankhah2016_linear_ambka02"],
    wake_frame="yawed",
    verbosity=0,
)

The optimization problem is power maximization by finding the optimal value of the variable FV.YAWM for each turbine:

In [6]:
problem = OptFarmVars("opt_yawm", algo)
problem.add_var(FV.YAWM, float, 0.0, -40.0, 40.0, level="turbine")
problem.add_objective(MaxFarmPower(problem))
problem.initialize()
Problem 'opt_yawm': Optimization variable list

        name   var   type  index    level  state  turbine  sel_turbine  init  \
0  YAWM_0000  YAWM  float      0  turbine     -1        0            0   0.0
1  YAWM_0001  YAWM  float      1  turbine     -1        1            1   0.0
2  YAWM_0002  YAWM  float      2  turbine     -1        2            2   0.0
3  YAWM_0003  YAWM  float      3  turbine     -1        3            3   0.0
4  YAWM_0004  YAWM  float      4  turbine     -1        4            4   0.0
5  YAWM_0005  YAWM  float      5  turbine     -1        5            5   0.0
6  YAWM_0006  YAWM  float      6  turbine     -1        6            6   0.0
7  YAWM_0007  YAWM  float      7  turbine     -1        7            7   0.0
8  YAWM_0008  YAWM  float      8  turbine     -1        8            8   0.0

    min   max pre_rotor model_key
0 -40.0  40.0     False  opt_yawm
1 -40.0  40.0     False  opt_yawm
2 -40.0  40.0     False  opt_yawm
3 -40.0  40.0     False  opt_yawm
4 -40.0  40.0     False  opt_yawm
5 -40.0  40.0     False  opt_yawm
6 -40.0  40.0     False  opt_yawm
7 -40.0  40.0     False  opt_yawm
8 -40.0  40.0     False  opt_yawm

Problem 'opt_yawm' (OptFarmVars): Initializing
----------------------------------------------
  n_vars_int  : 0
  n_vars_float: 9
----------------------------------------------
  n_objectives: 1
  n_obj_cmptns: 1
----------------------------------------------
  n_constraints: 0
  n_con_cmptns: 0
----------------------------------------------

Next, we setup the solver:

In [7]:
solver = Optimizer_pymoo(
    problem,
    problem_pars=dict(vectorize=True),
    algo_pars=dict(type="GA", pop_size=100, seed=42),
    setup_pars=dict(),
    term_pars=("n_gen", 100),
)
solver.initialize()
solver.print_info()
Loading pymoo
pymoo successfully loaded
Initializing Optimizer_pymoo
Selecting sampling: float_random (FloatRandomSampling)
Selecting algorithm: GA (GA)

Problem:
--------
  vectorize: True

Algorithm:
----------
  type: GA
  pop_size: 100
  seed: 42

Termination:
------------
  n_gen: 100

Now everything is setup, and we can solve the problem:

In [8]:
results = solver.solve()
solver.finalize(results)
=================================================
n_gen  |  n_eval  |     f_avg     |     f_min
=================================================
     1 |      100 | -2.716086E-01 | -3.062184E-01
     2 |      200 | -2.900518E-01 | -3.075843E-01
     3 |      300 | -2.998327E-01 | -3.176548E-01
     4 |      400 | -3.066163E-01 | -3.176548E-01
     5 |      500 | -3.116990E-01 | -3.181045E-01
     6 |      600 | -3.153652E-01 | -3.210101E-01
     7 |      700 | -3.178322E-01 | -3.241374E-01
     8 |      800 | -3.202072E-01 | -3.241374E-01
     9 |      900 | -3.221594E-01 | -3.252988E-01
    10 |     1000 | -3.233195E-01 | -3.255576E-01
    11 |     1100 | -3.240882E-01 | -3.261391E-01
    12 |     1200 | -3.246163E-01 | -3.261391E-01
    13 |     1300 | -3.252244E-01 | -3.268285E-01
    14 |     1400 | -3.256995E-01 | -3.271945E-01
    15 |     1500 | -3.261343E-01 | -3.271945E-01
    16 |     1600 | -3.264993E-01 | -3.271945E-01
    17 |     1700 | -3.267905E-01 | -3.272931E-01
    18 |     1800 | -3.269569E-01 | -3.273335E-01
    19 |     1900 | -3.270618E-01 | -3.274558E-01
    20 |     2000 | -3.271565E-01 | -3.274558E-01
    21 |     2100 | -3.272321E-01 | -3.274674E-01
    22 |     2200 | -3.272973E-01 | -3.275297E-01
    23 |     2300 | -3.273522E-01 | -3.275642E-01
    24 |     2400 | -3.274000E-01 | -3.275892E-01
    25 |     2500 | -3.274407E-01 | -3.276063E-01
    26 |     2600 | -3.274856E-01 | -3.276894E-01
    27 |     2700 | -3.275084E-01 | -3.276894E-01
    28 |     2800 | -3.275378E-01 | -3.276894E-01
    29 |     2900 | -3.275671E-01 | -3.276894E-01
    30 |     3000 | -3.275862E-01 | -3.276894E-01
    31 |     3100 | -3.276094E-01 | -3.277010E-01
    32 |     3200 | -3.276308E-01 | -3.277010E-01
    33 |     3300 | -3.276463E-01 | -3.277112E-01
    34 |     3400 | -3.276695E-01 | -3.277478E-01
    35 |     3500 | -3.276892E-01 | -3.277723E-01
    36 |     3600 | -3.277063E-01 | -3.277793E-01
    37 |     3700 | -3.277210E-01 | -3.277793E-01
    38 |     3800 | -3.277354E-01 | -3.277924E-01
    39 |     3900 | -3.277519E-01 | -3.278052E-01
    40 |     4000 | -3.277655E-01 | -3.278052E-01
    41 |     4100 | -3.277770E-01 | -3.278052E-01
    42 |     4200 | -3.277852E-01 | -3.278054E-01
    43 |     4300 | -3.277915E-01 | -3.278054E-01
    44 |     4400 | -3.277968E-01 | -3.278081E-01
    45 |     4500 | -3.278009E-01 | -3.278086E-01
    46 |     4600 | -3.278038E-01 | -3.278117E-01
    47 |     4700 | -3.278054E-01 | -3.278122E-01
    48 |     4800 | -3.278072E-01 | -3.278145E-01
    49 |     4900 | -3.278085E-01 | -3.278154E-01
    50 |     5000 | -3.278099E-01 | -3.278155E-01
    51 |     5100 | -3.278108E-01 | -3.278172E-01
    52 |     5200 | -3.278124E-01 | -3.278172E-01
    53 |     5300 | -3.278136E-01 | -3.278172E-01
    54 |     5400 | -3.278146E-01 | -3.278188E-01
    55 |     5500 | -3.278157E-01 | -3.278193E-01
    56 |     5600 | -3.278166E-01 | -3.278194E-01
    57 |     5700 | -3.278173E-01 | -3.278197E-01
    58 |     5800 | -3.278179E-01 | -3.278209E-01
    59 |     5900 | -3.278183E-01 | -3.278210E-01
    60 |     6000 | -3.278189E-01 | -3.278210E-01
    61 |     6100 | -3.278195E-01 | -3.278213E-01
    62 |     6200 | -3.278200E-01 | -3.278213E-01
    63 |     6300 | -3.278205E-01 | -3.278213E-01
    64 |     6400 | -3.278210E-01 | -3.278214E-01
    65 |     6500 | -3.278211E-01 | -3.278214E-01
    66 |     6600 | -3.278212E-01 | -3.278214E-01
    67 |     6700 | -3.278212E-01 | -3.278214E-01
    68 |     6800 | -3.278213E-01 | -3.278214E-01
    69 |     6900 | -3.278213E-01 | -3.278215E-01
    70 |     7000 | -3.278213E-01 | -3.278215E-01
    71 |     7100 | -3.278214E-01 | -3.278216E-01
    72 |     7200 | -3.278214E-01 | -3.278217E-01
    73 |     7300 | -3.278214E-01 | -3.278217E-01
    74 |     7400 | -3.278215E-01 | -3.278217E-01
    75 |     7500 | -3.278215E-01 | -3.278217E-01
    76 |     7600 | -3.278216E-01 | -3.278218E-01
    77 |     7700 | -3.278217E-01 | -3.278218E-01
    78 |     7800 | -3.278217E-01 | -3.278218E-01
    79 |     7900 | -3.278217E-01 | -3.278218E-01
    80 |     8000 | -3.278218E-01 | -3.278218E-01
    81 |     8100 | -3.278218E-01 | -3.278218E-01
    82 |     8200 | -3.278218E-01 | -3.278218E-01
    83 |     8300 | -3.278218E-01 | -3.278218E-01
    84 |     8400 | -3.278218E-01 | -3.278218E-01
    85 |     8500 | -3.278218E-01 | -3.278218E-01
    86 |     8600 | -3.278218E-01 | -3.278218E-01
    87 |     8700 | -3.278218E-01 | -3.278218E-01
    88 |     8800 | -3.278218E-01 | -3.278218E-01
    89 |     8900 | -3.278218E-01 | -3.278218E-01
    90 |     9000 | -3.278218E-01 | -3.278219E-01
    91 |     9100 | -3.278218E-01 | -3.278219E-01
    92 |     9200 | -3.278218E-01 | -3.278219E-01
    93 |     9300 | -3.278218E-01 | -3.278219E-01
    94 |     9400 | -3.278218E-01 | -3.278219E-01
    95 |     9500 | -3.278219E-01 | -3.278219E-01
    96 |     9600 | -3.278219E-01 | -3.278219E-01
    97 |     9700 | -3.278219E-01 | -3.278219E-01
    98 |     9800 | -3.278219E-01 | -3.278219E-01
    99 |     9900 | -3.278219E-01 | -3.278219E-01
   100 |    10000 | -3.278219E-01 | -3.278219E-01


Optimizer_pymoo: Optimization run finished
  Success: True
  Best maximize_power = 14751.984832734459
In [9]:
print()
print(results)

fr = results.problem_results.to_dataframe()
fr[[FV.X, FV.Y, FV.AMB_WD, FV.YAWM, FV.TI, FV.REWS, FV.P]]

Results problem 'opt_yawm':
----------------------------
  Float variables:
    0: YAWM_0000 = -3.024916e+01
    1: YAWM_0001 = -2.555786e+01
    2: YAWM_0002 = -2.555471e+01
    3: YAWM_0003 = -2.458684e+01
    4: YAWM_0004 = 2.456818e+01
    5: YAWM_0005 = 2.458887e+01
    6: YAWM_0006 = 2.077965e-02
    7: YAWM_0007 = 1.625032e-02
    8: YAWM_0008 = 1.515184e-02
----------------------------
  Objectives:
    0: maximize_power = 1.475198e+04
----------------------------
  Success: True
----------------------------

Out[9]:
X Y AMB_WD YAWM TI REWS P
state turbine
0 0 500.0 500.0 270.0 -30.249163 0.060000 9.000000 1928.995420
1 700.0 1100.0 270.0 -25.557857 0.060000 8.119351 1544.518581
2 900.0 1700.0 270.0 -25.554709 0.060000 8.119564 1544.708539
3 1800.0 500.0 270.0 -24.586841 0.065713 7.857941 1422.846941
4 2000.0 1100.0 270.0 24.568175 0.070112 7.665933 1317.609645
5 2200.0 1700.0 270.0 24.588871 0.070116 7.664458 1316.361700
6 3100.0 500.0 270.0 0.020780 0.072090 8.227575 1941.211689
7 3300.0 1100.0 270.0 0.016250 0.073104 8.128745 1867.337034
8 3500.0 1700.0 270.0 0.015152 0.073078 8.130161 1868.395284

Finally, we can visualize the result by looking at the flow field:

In [10]:
o = foxes.output.FlowPlots2D(algo, results.problem_results)
fig = o.get_mean_fig_xy("WS", resolution=10, xmax=5000)
plt.show()
../_images/notebooks_wake_steering_18_0.png

Clearly the turbines are trying to avoid hitting downwind turbines with their wakes.

Finally, let’s shutdown the foxes engine:

In [11]:
engine.finalize()