import numpy as np
from .farm_data_model import FarmDataModelList, FarmDataModel
from .turbine_model import TurbineModel
from .turbine_type import TurbineType
import foxes.constants as FC
[docs]
class FarmController(FarmDataModel):
"""
Analyses selected turbine models and handles their call.
Attributes
----------
turbine_types: list of foxes.core.TurbineType
The turbine type of each turbine
turbine_model_names: list of str
Names of all turbine models found in the farm
pre_rotor_models: foxes.core.FarmDataModelList
The turbine models with pre-rotor flag
post_rotor_models: foxes.core.FarmDataModelList
The turbine models without pre-rotor flag
pars: dict
Parameters for the turbine models, stored
under their respecitve name
:group: core
"""
[docs]
def __init__(self, pars={}):
"""
Constructor.
Parameters
----------
pars: dict
Parameters for the turbine models, stored
under their respective name
"""
super().__init__()
self.turbine_types = None
self.turbine_model_names = None
self.pre_rotor_models = None
self.post_rotor_models = None
self.pars = pars
[docs]
def sub_models(self):
"""
List of all sub-models
Returns
-------
smdls: list of foxes.core.Model
Names of all sub models
"""
return [
self.pre_rotor_models,
self.post_rotor_models,
]
[docs]
def set_pars(self, model_name, init_pars, calc_pars, final_pars):
"""
Set parameters for a turbine model
Parameters
----------
model_name: str
Name of the model
init_pars: dict
Parameters for initialization
calc_pars: dict
Parameters for calculation
final_pars: dict
Parameters for finalization
"""
self.pars[model_name] = {
"init": init_pars,
"calc": calc_pars,
"final": final_pars,
}
def _analyze_models(self, algo, pre_rotor, models):
"""
Helper function for model analysis
"""
tmodels = []
tmsels = []
mnames = [[m.name for m in mlist] for mlist in models]
tmis = np.zeros(algo.n_turbines, dtype=FC.ITYPE)
news = True
while news:
news = False
for ti, mlist in enumerate(models):
if tmis[ti] < len(mlist):
mname = mnames[ti][tmis[ti]]
isnext = True
for tj, jnames in enumerate(mnames):
if (
tj != ti
and mname in jnames
and tmis[tj] < len(jnames)
and jnames[tmis[tj]] != mname
):
isnext = False
break
if isnext:
m = models[ti][tmis[ti]]
tmodels.append(m)
tsel = np.zeros((algo.n_states, algo.n_turbines), dtype=bool)
for tj, jnames in enumerate(mnames):
mi = tmis[tj]
if mi < len(jnames) and jnames[mi] == mname:
ssel = algo.farm.turbines[tj].mstates_sel[mi]
tsel[:, tj] = True if ssel is None else ssel
tmis[tj] += 1
tmsels.append(tsel)
news = True
break
if pre_rotor:
self.pre_rotor_models = FarmDataModelList(tmodels)
self.pre_rotor_models.name = f"{self.name}_prer"
mtype = "pre-rotor"
else:
self.post_rotor_models = FarmDataModelList(tmodels)
self.post_rotor_models.name = f"{self.name}_postr"
mtype = "post-rotor"
for ti, t in enumerate(algo.farm.turbines):
if tmis[ti] != len(models[ti]):
raise ValueError(
f"Turbine {ti}, {t.name}: Could not find turbine model order that includes all {mtype} turbine models, missing {t.models[tmis[ti]:]}"
)
return [m.name for m in tmodels], tmsels
[docs]
def collect_models(self, algo):
"""
Analyze and gather turbine models, based on the
turbines of the wind farm.
Parameters
----------
algo: foxes.core.Algorithm
The calculation algorithm
"""
# check turbine models, and find turbine types and pre/post-rotor models:
self.turbine_types = [None for t in algo.farm.turbines]
prer_models = [[] for t in algo.farm.turbines]
postr_models = [[] for t in algo.farm.turbines]
for ti, t in enumerate(algo.farm.turbines):
prer = None
for mi, mname in enumerate(t.models):
istype = False
if mname in algo.mbook.turbine_types:
m = algo.mbook.turbine_types[mname]
if not isinstance(m, TurbineType):
raise TypeError(
f"Model {mname} type {type(m).__name__} is not derived from {TurbineType.__name__}"
)
models = [m]
istype = True
elif mname in algo.mbook.turbine_models:
m = algo.mbook.turbine_models[mname]
models = m.models if isinstance(m, FarmDataModelList) else [m]
for mm in models:
if not isinstance(mm, TurbineModel):
raise TypeError(
f"Model {mname} type {type(mm).__name__} is not derived from {TurbineModel.__name__}"
)
else:
raise KeyError(
f"Model {mname} not found in model book types or models"
)
if istype:
if self.turbine_types[ti] is None:
self.turbine_types[ti] = m
else:
raise ValueError(
f"Turbine {ti}, {t.name}: Multiple turbine types found in self.turbine_models list, {self.turbine_types[ti].name} and {mname}"
)
for m in models:
m.name = mname
if prer is None:
prer = m.pre_rotor
elif not prer and m.pre_rotor:
raise ValueError(
f"Turbine {ti}, {t.name}: Model is classified as pre-rotor, but following the post-rotor model '{t.models[mi-1]}'"
)
if m.pre_rotor:
prer_models[ti].append(m)
else:
postr_models[ti].append(m)
if self.turbine_types[ti] is None:
raise ValueError(
f"Turbine {ti}, {t.name}: Missing a turbine type model among models {t.models}"
)
# analyze models:
mnames_pre, tmsels_pre = self._analyze_models(
algo, pre_rotor=True, models=prer_models
)
mnames_post, tmsels_post = self._analyze_models(
algo, pre_rotor=False, models=postr_models
)
tmsels = tmsels_pre + tmsels_post
self._tmall = [np.all(t) for t in tmsels]
self.turbine_model_names = mnames_pre + mnames_post
if len(self.turbine_model_names):
self._tmsels = np.stack(tmsels, axis=2)
else:
raise ValueError(f"Controller '{self.name}': No turbine model found.")
def __get_pars(self, algo, models, ptype, mdata=None, downwind_index=None):
"""
Private helper function for gathering model parameters.
"""
pars = []
for m in models:
mi = self.turbine_model_names.index(m.name)
if self._tmall[mi]:
s = np.s_[:, :] if downwind_index is None else np.s_[:, downwind_index]
else:
if downwind_index is None:
s = mdata[FC.TMODEL_SELS][:, :, mi]
else:
s = np.s_[
mdata[FC.TMODEL_SELS][:, downwind_index, mi], downwind_index
]
pars.append({"st_sel": s})
if m.name in self.pars:
pars[-1].update(self.pars[m.name][ptype])
return pars
[docs]
def initialize(self, algo, verbosity=0):
"""
Initializes the model.
Parameters
----------
algo: foxes.core.Algorithm
The calculation algorithm
verbosity: int
The verbosity level, 0 = silent
"""
self.collect_models(algo)
super().initialize(algo, verbosity)
[docs]
def load_data(self, algo, verbosity=0):
"""
Load and/or create all model data that is subject to chunking.
Such data should not be stored under self, for memory reasons. The
data returned here will automatically be chunked and then provided
as part of the mdata object during calculations.
Parameters
----------
algo: foxes.core.Algorithm
The calculation algorithm
verbosity: int
The verbosity level, 0 = silent
Returns
-------
idata: dict
The dict has exactly two entries: `data_vars`,
a dict with entries `name_str -> (dim_tuple, data_ndarray)`;
and `coords`, a dict with entries `dim_name_str -> dim_array`
"""
idata = super().load_data(algo, verbosity)
idata["coords"][FC.TMODELS] = self.turbine_model_names
idata["data_vars"][FC.TMODEL_SELS] = (
(FC.STATE, FC.TURBINE, FC.TMODELS),
self._tmsels,
)
self._tmsels = None
return idata
[docs]
def output_farm_vars(self, algo):
"""
The variables which are being modified by the model.
Parameters
----------
algo: foxes.core.Algorithm
The calculation algorithm
Returns
-------
output_vars: list of str
The output variable names
"""
return list(
dict.fromkeys(
self.pre_rotor_models.output_farm_vars(algo)
+ self.post_rotor_models.output_farm_vars(algo)
)
)
[docs]
def calculate(self, algo, mdata, fdata, pre_rotor, downwind_index=None):
""" "
The main model calculation.
This function is executed on a single chunk of data,
all computations should be based on numpy arrays.
Parameters
----------
algo: foxes.core.Algorithm
The calculation algorithm
mdata: foxes.core.MData
The model data
fdata: foxes.core.FData
The farm data
pre_rotor: bool
Flag for running pre-rotor or post-rotor
models
downwind_index: int, optional
The index in the downwind order
Returns
-------
results: dict
The resulting data, keys: output variable str.
Values: numpy.ndarray with shape (n_states, n_turbines)
"""
s = self.pre_rotor_models if pre_rotor else self.post_rotor_models
pars = self.__get_pars(algo, s.models, "calc", mdata, downwind_index)
res = s.calculate(algo, mdata, fdata, parameters=pars)
return res
[docs]
def finalize(self, algo, verbosity=0):
"""
Finalizes the model.
Parameters
----------
algo: foxes.core.Algorithm
The calculation algorithm
verbosity: int
The verbosity level, 0 means silent
"""
super().finalize(algo, verbosity)
self.turbine_model_names = None