Source code for foxes.input.states.create.random_abl_states

import pandas as pd
import numpy as np

from foxes.config import config, get_output_path
import foxes.variables as FV
import foxes.constants as FC


[docs] def create_random_abl_states( n_states, cols_minmax, var2col={}, mol_abs_range=(50.0, 5000.0), normalize=True ): """ Create random abl states. Parameters ---------- n_states: int The number of states cols_minmax: dict For each variable the min and max values, keys: variable name str, values: array_like with length 2 var2col: dict, optional Mapping from variables to column names mol_abs_range: tuple Min and max of allowed MOL values, set to nan if exceeded (i.e., neutral stratification) normalize: bool Normalize weights to 1 Returns ------- data: pandas.DataFrame The created states data :group: input.states.create """ data = pd.DataFrame(index=range(n_states)) data.index.name = FC.STATE for v, mm in cols_minmax.items(): data[v] = np.random.uniform(low=mm[0], high=mm[1], size=(n_states,)).astype( config.dtype_double ) cmol = var2col.get(FV.MOL, FV.MOL) if cmol in data and mol_abs_range is not None: sel = (data[cmol].abs() < mol_abs_range[0]) | ( data[cmol].abs() > mol_abs_range[1] ) data.loc[sel, cmol] = np.nan wcol = var2col.get(FV.WEIGHT, FV.WEIGHT) if wcol in data and normalize: data[wcol] /= data[wcol].sum() return data
[docs] def write_random_abl_states( file_path, n_states, cols_minmax, var2col={}, mol_abs_range=(50.0, 5000.0), normalize=True, verbosity=1, digits="auto", **kwargs, ): """ Writes random abl states to file Parameters ---------- file_path: str Path to the file n_states: int The number of states cols_minmax: dict For each variable the min and max values, keys: variable name str, values: array_like with length 2 var2col: dict, optional Mapping from variables to column names mol_abs_range: tuple Min and max of allowed MOL values, set to nan if exceeded (i.e., neutral stratification) normalize: bool Normalize weights to 1 verbosity: int The verbosity level, 0 = silent digits: int or auto The number of digits to be written kwargs: dict, optional Parameters for `pandas.DataFrame.to_csv` """ fpath = get_output_path(file_path) if verbosity: print("Writing file", fpath) data = create_random_abl_states( n_states, cols_minmax, var2col, mol_abs_range, normalize ) if digits is not None: hdigits = {c: 4 for c in cols_minmax.keys()} wcol = var2col.get(FV.WEIGHT, FV.WEIGHT) if wcol in cols_minmax: hdigits[wcol] = None mcol = var2col.get(FV.MOL, FV.MOL) if mcol in cols_minmax: hdigits[mcol] = 1 tcol = var2col.get(FV.TI, FV.TI) if tcol in cols_minmax: hdigits[tcol] = 6 if isinstance(digits, str) and digits == "auto": digits = hdigits else: digits = hdigits if digits is not None: for v, d in digits.items(): if d is not None: data[v] = data[v].round(d) data.to_csv(fpath, **kwargs)