Source code for foxes.input.states.single

import numpy as np

from foxes.core import States, VerticalProfile
import foxes.variables as FV
import foxes.constants as FC


[docs] class SingleStateStates(States): """ A single uniform state. Attributes ---------- ws: float The wind speed wd: float The wind direction ti: float The TI value rho: float The air density profdicts: dict Key: output variable name str, Value: str or dict or `foxes.core.VerticalProfile` profdata: dict, Additional data for profiles :group: input.states """
[docs] def __init__(self, ws=None, wd=None, ti=None, rho=None, profiles={}, **profdata): """ Constructor. Parameters ---------- ws: float, optional The wind speed wd: float, optional The wind direction ti: float, optional The TI value rho: float, optional The air density profiles: dict, optional Key: output variable name str, Value: str or dict or `foxes.core.VerticalProfile` profdata: dict, optional Additional data for profiles """ super().__init__() self.ws = ws self.wd = wd self.ti = ti self.rho = rho self.profdicts = profiles self.profdata = profdata if ( ws is None and wd is None and ti is None and rho is None and not len(profiles) ): raise KeyError( f"Expecting at least one parameter: ws, wd, ti, rho, profiles" )
[docs] def sub_models(self): """ List of all sub-models Returns ------- smdls: list of foxes.core.Model Names of all sub models """ return list(self._profiles.values())
[docs] def initialize(self, algo, verbosity=0): """ Initializes the model. Parameters ---------- algo: foxes.core.Algorithm The calculation algorithm verbosity: int The verbosity level, 0 = silent """ self._profiles = {} for v, d in self.profdicts.items(): if isinstance(d, str): self._profiles[v] = VerticalProfile.new(d) elif isinstance(d, VerticalProfile): self._profiles[v] = d elif isinstance(d, dict): t = d.pop("type") self._profiles[v] = VerticalProfile.new(t, **d) else: raise TypeError( f"States '{self.name}': Wrong profile type '{type(d).__name__}' for variable '{v}'. Expecting VerticalProfile, str or dict" ) super().initialize(algo, verbosity)
[docs] def size(self): """ The total number of states. Returns ------- int: The total number of states """ return 1
[docs] def output_point_vars(self, algo): """ The variables which are being modified by the model. Parameters ---------- algo: foxes.core.Algorithm The calculation algorithm Returns ------- output_vars: list of str The output variable names """ out = set() if self.ws is not None: out.add(FV.WS) if self.wd is not None: out.add(FV.WD) if self.ti is not None: out.add(FV.TI) if self.rho is not None: out.add(FV.RHO) out.update(list(self._profiles.keys())) return list(out)
[docs] def weights(self, algo): """ The statistical weights of all states. Parameters ---------- algo: foxes.core.Algorithm The calculation algorithm Returns ------- weights: numpy.ndarray The weights, shape: (n_states, n_turbines) """ return np.ones((1, algo.n_turbines), dtype=FC.DTYPE)
[docs] def calculate(self, algo, mdata, fdata, tdata): """ " The main model calculation. This function is executed on a single chunk of data, all computations should be based on numpy arrays. Parameters ---------- algo: foxes.core.Algorithm The calculation algorithm mdata: foxes.core.MData The model data fdata: foxes.core.FData The farm data tdata: foxes.core.TData The target point data Returns ------- results: dict The resulting data, keys: output variable str. Values: numpy.ndarray with shape (n_states, n_targets, n_tpoints) """ if self.ws is not None: tdata[FV.WS] = np.full( (tdata.n_states, tdata.n_targets, tdata.n_tpoints), self.ws, dtype=FC.DTYPE, ) if self.wd is not None: tdata[FV.WD] = np.full( (tdata.n_states, tdata.n_targets, tdata.n_tpoints), self.wd, dtype=FC.DTYPE, ) if self.ti is not None: tdata[FV.TI] = np.full( (tdata.n_states, tdata.n_targets, tdata.n_tpoints), self.ti, dtype=FC.DTYPE, ) if self.rho is not None: tdata[FV.RHO] = np.full( (tdata.n_states, tdata.n_targets, tdata.n_tpoints), self.rho, dtype=FC.DTYPE, ) if len(self._profiles): z = tdata[FC.TARGETS][..., 2] for k, v in self.profdata.items(): tdata[k] = v for v, p in self._profiles.items(): pres = p.calculate(tdata, z) tdata[v] = pres return {v: tdata[v] for v in self.output_point_vars(algo)}