Source code for foxes.input.windio.get_states

import numpy as np
import pandas as pd
from xarray import Dataset
from numbers import Number

from foxes.core import States
import foxes.constants as FC
import foxes.variables as FV

def _get_profiles(coords, fields, dims, ovars, fixval, verbosity):
    """Read ABL profiles information
    :group: input.windio
    """
    profiles = {}
    if FV.Z0 in fields:
        if FV.H not in fields and verbosity > 0:
            print(f"Ignoring '{FV.Z0}', since no reference_height found. No ABL profile activated.")
        elif FV.MOL in fields:
            ovars.append(FV.MOL)
            fixval[FV.H] = fields[FV.H]
            profiles = {FV.WS: "ABLLogWsProfile"}
        else:
            fixval[FV.H] = fields[FV.H]
            profiles = {FV.WS: "ABLLogNeutralWsProfile"}
    elif FV.H in fields and verbosity > 0:
        print(f"Ignoring '{FV.H}', since no '{FV.Z0}' data found. No ABL profile activated.")
    if len(profiles) and verbosity > 2:
        print(f"        Selecting ABL profile '{profiles[FV.WS]}', {FV.H} = {fields[FV.H]} m")
            
    return profiles
    
def _get_SingleStateStates(coords, fields, dims, states_dict, 
                           ovars, fixval, profiles, verbosity):
    """Try to generate single state parameters
    :group: input.windio
    """
    for c in coords:
        if not isinstance(c, Number):
            return False

    if verbosity > 2:
        print("        selecting class 'SingleStateStates'")

    smap = {FV.WS: "ws", FV.WD: "wd", FV.TI: "ti", FV.RHO: "rho"}

    data = {smap[v]: d for v, d in fixval.items()}
    for v, d in coords.items():
        if v in smap:
            data[smap[v]] = d
        elif verbosity > 1:
            print(f"        ignoring coord '{v}'")
    for v, d in fields.items():
        if v in smap and len(dims[v]) == 0:
            data[smap[v]] = d
        elif verbosity > 1:
            print(f"        ignoring field '{v}' with dims {dims[v]}")

    sdata = pd.DataFrame(index=coords[FC.TIME], data=data)
    sdata.index.name = FC.TIME
    states_dict.update(
        dict(
            states_type="SingleStateStates",
            profiles=profiles,
            **data,
        )
    )
    return True

def _get_Timeseries(coords, fields, dims, states_dict, 
                    ovars, fixval, profiles, verbosity):
    """Try to generate time series parameters
    :group: input.windio
    """
    if len(coords) == 1 and FC.TIME in coords:
        if verbosity > 2:
            print("        selecting class 'Timeseries'")

        data = {}
        fix = {}
        for v, d in fields.items():
            if dims[v] == (FC.TIME,):
                data[v] = d
            elif len(dims[v]) == 0:
                fix[v] = d
            elif verbosity > 2:
                print(f"        ignoring field '{v}' with dims {dims[v]}")
        fix.update({v: d for v, d in fixval.items() if v not in data})

        sdata = pd.DataFrame(index=coords[FC.TIME], data=data)
        sdata.index.name = FC.TIME
        states_dict.update(
            dict(
                states_type="Timeseries",
                data_source=sdata,
                output_vars=ovars,
                fixed_vars=fix,
                profiles=profiles,
            )
        )
        return True
    return False

def _get_MultiHeightNCTimeseries(coords, fields, dims, states_dict, 
                    ovars, fixval, profiles, verbosity):
    """Try to generate time series parameters
    :group: input.windio
    """
    if len(coords) == 2 and FC.TIME in coords and FV.H in coords:
        if verbosity > 2:
            print("        selecting class 'MultiHeightNCTimeseries'")
            
        if len(profiles) and verbosity > 0:
            print(f"Ignoring profile '{profiles[FV.WS]}' for states class 'MultiHeightNCTimeseries'")

        data = {}
        fix = {}
        for v, d in fields.items():
            if dims[v] == (FC.TIME, FV.H):
                data[v] = ((FC.TIME, FV.H), d)
            if dims[v] == (FV.H, FC.TIME):
                data[v] = ((FC.TIME, FV.H), np.swapaxes(d, 0, 1))
            elif len(dims[v]) == 0:
                fix[v] = d
            elif verbosity > 2:
                print(f"        ignoring field '{v}' with dims {dims[v]}")
        fix.update({v: d for v, d in fixval.items() if v not in data})

        sdata = Dataset(coords=coords, data_vars=data)
        states_dict.update(
            dict(
                states_type="MultiHeightNCTimeseries",
                h_coord=FV.H,
                format_times_func=None,
                data_source=sdata,
                output_vars=ovars,
                fixed_vars=fix,
            )
        )
        return True
    return False

[docs] def get_states(coords, fields, dims, verbosity=1): """ Reads states parameters from windio input Parameters ---------- coords: dict The coordinates data fields: dict The fields data dims: dict The dimensions data verbosity: int The verbosity level Returns ------- states: foxes.core.States The states object :group: input.windio """ if verbosity > 2: print(" Preparing states") ovars = [FV.WS, FV.WD, FV.TI, FV.RHO] fixval = {FV.TI: 0.05, FV.RHO: 1.225} profiles = _get_profiles(coords, fields, dims, ovars, fixval, verbosity) states_dict = {} if _get_SingleStateStates( coords, fields, dims, states_dict, ovars, fixval, profiles, verbosity ) or _get_Timeseries( coords, fields, dims, states_dict, ovars, fixval, profiles, verbosity ) or _get_MultiHeightNCTimeseries( coords, fields, dims, states_dict, ovars, fixval, profiles, verbosity ): return States.new(**states_dict) else: raise ValueError( f"Failed to create states for coords {list(coords.keys())} and fields {list(fields.keys())} with dims {dims}" )