Source code for foxes.output.farm_layout

import json
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable

from foxes.config import config
import foxes.variables as FV
from foxes.output.output import Output


[docs] class FarmLayoutOutput(Output): """ Plot the farm layout Attributes ---------- farm: foxes.WindFarm The wind farm fres: xarray.Dataset The wind farm calculation results from_res: bool Flag for coordinates from results data results_state: int The state index, for from_res D: float The rotor diameter, if not from data :group: output """
[docs] def __init__( self, farm, farm_results=None, from_results=False, results_state=None, D=None, **kwargs, ): """ Constructor. Parameters ---------- farm: foxes.WindFarm The wind farm farm_results: xarray.Dataset, optional The wind farm calculation results from_results: bool, optional Flag for coordinates from results data results_state: int, optional The state index, for from_res D: float, optional The rotor diameter, if not from data kwargs: dict, optional Additional parameters for the base class """ super().__init__(**kwargs) self.farm = farm self.fres = farm_results self.from_res = from_results self.rstate = results_state self.D = D if from_results and farm_results is None: raise ValueError(f"Missing farm_results for switch from_results.") if from_results and results_state is None: raise ValueError(f"Please specify results_state for switch from_results.")
[docs] def get_layout_data(self): """ Returns wind farm layout. Returns ------- numpy.ndarray : The wind farm layout, shape: (n_turbines, 3) where the 3 represents x, y, h """ data = np.zeros([self.farm.n_turbines, 3], dtype=config.dtype_double) if self.from_res: data[:, 0] = self.fres[FV.X][self.rstate] data[:, 1] = self.fres[FV.Y][self.rstate] data[:, 2] = self.fres[FV.H][self.rstate] else: for ti, t in enumerate(self.farm.turbines): data[ti, :2] = t.xy data[ti, 2] = t.H return data
[docs] def get_layout_dict(self): """ Returns wind farm layout. Returns ------- dict : The wind farm layout in dict format, as in json output """ data = self.get_layout_data() out = {self.farm.name: {}} for ti, p in enumerate(data): t = self.farm.turbines[ti] out[self.farm.name][t.name] = { "id": t.index, "name": t.name, "UTMX": p[0], "UTMY": p[1], } return out
[docs] def get_figure( self, color_by=None, fontsize=8, figsize=None, annotate=1, title=None, fig=None, ax=None, normalize_D=False, ret_im=False, bargs={}, anno_delx=0, anno_dely=0, **kwargs, ): """ Creates farm layout figure. Parameters ---------- color_by: str, optional Set scatter color by variable results. Use "mean_REWS", etc, for means, also min, max, sum. All wrt states fontsize: int, optional Size of the turbine numbers figsize: tuple, optional The figsize for plt.Figure annotate: int, optional Turbine index printing, Choices: 0 = No annotation 1 = Turbine indices 2 = Turbine names title: str, optional The plot title, or None for automatic fig: matplotlib.pyplot.Figure, optional The figure object to which to add ax: matplotlib.pyplot.Axis, optional The axis object, to which to add normalize_D: bool Normalize x, y wrt rotor diameter ret_im: bool Flag for returned image object bargs: dict Arguments for boundary plotting anno_delx: float The annotation delta x anno_dely: float The annotation delta y kwargs: dict, optional Parameters forwarded to `matplotlib.pyplot.scatter` Returns ------- ax: matplotlib.pyplot.Axis The axis object im: matplotlib.pyplot.PathCollection, optional The image object """ if fig is None: fig = plt.figure(figsize=figsize) ax = fig.add_subplot(111) else: ax = fig.axes[0] if ax is None else ax D = self.D x = None if self.farm.n_turbines: if normalize_D and D is None: if self.from_res: if self.fres[FV.D].min() != self.fres[FV.D].max(): raise ValueError( f"Expecting uniform D, found {self.fres[FV.D]}" ) D = self.fres[FV.D][0] else: D = None for ti, t in enumerate(self.farm.turbines): hD = t.D if D is None: D = hD elif D != hD: raise ValueError( f"Turbine {ti} has wrong rotor diameter, expecting D = {D} m, found D = {hD} m" ) if D is None: raise ValueError( f"Variable '{FV.D}' not found in turbines. Maybe set explicitely, or try from_results?" ) data = self.get_layout_data() x = data[:, 0] / D if normalize_D else data[:, 0] y = data[:, 1] / D if normalize_D else data[:, 1] n = range(len(x)) kw = {"c": "orange"} kw.update(**kwargs) if color_by is not None: if self.fres is None: raise ValueError(f"Missing farm_results for color_by '{color_by}'") if color_by[:5] == "mean_": kw["c"] = np.einsum( "st,st->t", self.fres[color_by[5:]], self.fres[FV.WEIGHT] ) elif color_by[:4] == "sum_": kw["c"] = np.sum(self.fres[color_by[4:]], axis=0) elif color_by[:4] == "min_": kw["c"] = np.min(self.fres[color_by[4:]], axis=0) elif color_by[:4] == "max_": kw["c"] = np.max(self.fres[color_by[4:]], axis=0) else: raise KeyError( f"Unknown color_by '{color_by}'. Choose: mean_X, sum_X, min_X, max_X, where X is a farm_results variable" ) im = ax.scatter(x, y, **kw) if annotate == 1: for i, txt in enumerate(n): ax.annotate( int(txt), (x[i] + anno_delx, y[i] + anno_dely), size=fontsize ) elif annotate == 2: for i, t in enumerate(self.farm.turbines): ax.annotate( t.name, (x[i] + anno_delx, y[i] + anno_dely), size=fontsize ) if self.farm.boundary is not None: hbargs = {"fill_mode": "inside_lightgray"} hbargs.update(bargs) self.farm.boundary.add_to_figure(ax, **hbargs) ti = ( title if title is not None else ( self.farm.name if D is None or not normalize_D else f"{self.farm.name} (D = {D} m)" ) ) ax.set_title(ti) ax.set_xlabel("x [m]" if not normalize_D else "x [D]") ax.set_ylabel("y [m]" if not normalize_D else "y [D]") ax.grid() # if len(self.farm.boundary_geometry) \ # or ( min(x) != max(x) and min(y) != max(y) ): if x is None or (min(x) != max(x) and min(y) != max(y)): ax.set_aspect("equal", adjustable="box") ax.autoscale_view(tight=True) if color_by is not None: divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) fig.colorbar(im, cax=cax) if ret_im: return ax, im return ax
[docs] def write_plot(self, file_name=None, fontsize=8, **kwargs): """ Writes the layout plot to file. Parameters ---------- file_name: str Name of the file into which to plot, or None for default fontsize: int Size of the turbine numbers kwargs: dict, optional Additional arguments for get_figure() """ ax = self.get_figure(fontsize=fontsize, ret_im=False, **kwargs) fig = ax.get_figure() fname = file_name if file_name is not None else self.farm.name + ".png" fpath = self.get_fpath(fname) fig.savefig(fpath, bbox_inches="tight") plt.close(fig)
[docs] def write_xyh(self, file_path=None): """ Writes xyh layout file. Parameters ---------- file_path: str The file into which to plot, or None for default """ data = self.get_layout_data() fname = file_path if file_path is not None else self.farm.name + ".xyh" np.savetxt(fname, data, header="x y h")
[docs] def write_csv(self, file_name=None, type_col=None, algo=None): """ Writes csv layout file. Parameters ---------- file_name: str Name of the file into which to plot, or None for default type_col: str, optional Name of the turbine type column algo: foxes.core.Algorithm, optional The algorithm, needed for turbine types """ data = self.get_layout_data() fname = file_name if file_name is not None else self.farm.name + ".csv" fpath = self.get_fpath(fname) lyt = pd.DataFrame(index=range(len(data)), columns=["name", "x", "y", "h", "D"]) lyt.index.name = "index" lyt["name"] = [t.name for t in self.farm.turbines] lyt["x"] = np.round(data[:, 0], 4) lyt["y"] = np.round(data[:, 1], 4) lyt["h"] = np.round(data[:, 2], 4) lyt["D"] = [t.D for t in self.farm.turbines] if type_col is not None: lyt[type_col] = [m.name for m in algo.farm_controller.turbine_types] lyt.to_csv(fpath)
[docs] def write_json(self, file_name=None): """ Writes xyh layout file. Parameters ---------- file_name: str Name of the file into which to plot, or None for default """ data = self.get_layout_dict() fname = file_name if file_name is not None else self.farm.name + ".json" fpath = self.get_fpath(fname) with open(fpath, "w") as outfile: json.dump(data, outfile, indent=4)