- class iwopy.wrappers.SimpleProblem(iwopy.core.Problem)[source]
- A problem which simply pipes variables to its objectives and constraints. - Public members¶- 
SimpleProblem(name, int_vars=None, float_vars=None, ...)[source]
- Constructor 
 - var_names_int()[source]
- The names of integer variables. 
 - initial_values_int()[source]
- The initial values of the integer variables. 
 - min_values_int()[source]
- The minimal values of the integer variables. 
 - max_values_int()[source]
- The maximal values of the integer variables. 
 - var_names_float()[source]
- The names of float variables. 
 - initial_values_float()[source]
- The initial values of the float variables. 
 - min_values_float()[source]
- The minimal values of the float variables. 
 - max_values_float()[source]
- The maximal values of the float variables. 
 - 
INT_INF = -999999
 - property n_vars_int
- The number of int variables 
 - property n_vars_float
- The number of float variables 
 - 
add_objective(objective, varmap_int=None, varmap_float=None, ...)[source]
- Add an objective to the problem. 
 - 
add_constraint(constraint, varmap_int=None, varmap_float=None, ...)[source]
- Add a constraint to the problem. 
 - property min_values_constraints
- Gets the minimal values of constraints 
 - property max_values_constraints
- Gets the maximal values of constraints 
 - property constraints_tol
- Gets the tolerance values of constraints 
 - property n_objectives
- The total number of objectives, i.e., the sum of all components 
 - property n_constraints
- The total number of constraints, i.e., the sum of all components 
 - calc_gradients(vars_int, vars_float, func, components, ivars, ...)[source]
- The actual gradient calculation, not to be called directly (call get_gradients instead). 
 - 
get_gradients(vars_int, vars_float, func=None, components=None, ...)[source]
- Obtain gradients of a function that is linked to the problem. 
 - 
initialize(verbosity=1)[source]
- Initialize the problem. 
 - property maximize_objs
- Flags for objective maximization 
 - apply_individual(vars_int, vars_float)[source]
- Apply new variables to the problem. 
 - apply_population(vars_int, vars_float)[source]
- Apply new variables to the problem, for a whole population. 
 - 
evaluate_individual(vars_int, vars_float, ret_prob_res=False)[source]
- Evaluate a single individual of the problem. 
 - 
evaluate_population(vars_int, vars_float, ret_prob_res=False)[source]
- Evaluate all individuals of a population. 
 - 
check_constraints_individual(constraint_values, verbosity=0)[source]
- Check if the constraints are fullfilled for the given individual. 
 - 
check_constraints_population(constraint_values, verbosity=0)[source]
- Check if the constraints are fullfilled for the given population. 
 - 
finalize_individual(vars_int, vars_float, verbosity=1)[source]
- Finalization, given the champion data. 
 - 
finalize_population(vars_int, vars_float, verbosity=0)[source]
- Finalization, given the final population data. 
 - prob_res_einsum_individual(prob_res_list, coeffs)[source]
- Calculate the einsum of problem results 
 - prob_res_einsum_population(prob_res_list, coeffs)[source]
- Calculate the einsum of problem results 
 - classmethod new(problem_type, *args, **kwargs)[source]
- Run-time problem factory. 
 - property initialized
- Flag for finished initialization 
 
- 
SimpleProblem(name, int_vars=