-
foxes_opt.core.FarmOptProblem.calc_gradients(vars_int, vars_float, func, components, ivars, fvars, vrs, pop=
False
, verbosity=0
) The actual gradient calculation, not to be called directly (call get_gradients instead).
Can be overloaded in derived classes, the base class only considers analytic derivatives.
Parameters¶
- vars_int: np.array
The integer variable values, shape: (n_vars_int,)
- vars_float: np.array
The float variable values, shape: (n_vars_float,)
- func: iwopy.core.OptFunctionList, optional
The functions to be differentiated, or None for a list of all objectives and all constraints (in that order)
- components: list of int, optional
The function’s component selection, or None for all
- ivars: list of int
The indices of the function int variables in the problem
- fvars: list of int
The indices of the function float variables in the problem
- vrs: list of int
The function float variable indices wrt which the derivatives are to be calculated
- pop: bool
Flag for vectorizing calculations via population
- verbosity: int
The verbosity level, 0 = silent
Returns¶
- gradients: numpy.ndarray
The gradients of the functions, shape: (n_components, n_vrs)