Source code for foxes.output.slice_data

import numpy as np

from foxes.utils import write_nc
import foxes.variables as FV
import foxes.constants as FC

from .output import Output
from . import grids


[docs] class SliceData(Output): """ Create data for horizontal or vertical 2D slices Attributes ---------- algo: foxes.Algorithm The algorithm for point calculation farm_results: xarray.Dataset The farm results verbosity_delta: int Verbosity threshold for printing calculation info :group: output """
[docs] def __init__( self, algo, farm_results, verbosity_delta=1, **kwargs, ): """ Constructor. Parameters ---------- algo: foxes.Algorithm The algorithm for point calculation farm_results: xarray.Dataset The farm results verbosity_delta: int Verbosity threshold for printing calculation info kwargs: dict, optional Additional parameters for the base class """ super().__init__(**kwargs) self.algo = algo self.fres = farm_results self.verbosity_delta = verbosity_delta
def _data_mod( self, a_pos, b_pos, c_pos, data, normalize_a, normalize_b, normalize_c, normalize_v, vmin, vmax, ): """Helper function for data modification""" if normalize_a is not None: a_pos /= normalize_a if normalize_b is not None: b_pos /= normalize_b if normalize_c is not None: c_pos /= normalize_c for v in data: if v in normalize_v: data[v] /= normalize_v[v] if v in vmin: data[v] = np.maximum(data[v], vmin[v]) if v in vmax: data[v] = np.minimum(data[v], vmax[v]) return a_pos, b_pos, c_pos, data def _write(self, format, data, fname, verbosity, **write_pars): """Helper function for file writing""" if fname is not None: if format == "numpy": fpath = self.get_fpath(fname) if verbosity > 0: print("Writing file", fpath) wpars = dict(format="%.6f") wpars.update(write_pars) data.tofile(fpath, **wpars) elif format == "pandas": if verbosity > 0: print("Writing file", fpath) self.write(fname, data, **write_pars) elif format == "xarray": write_nc(data, self.get_fpath(fname), verbosity=verbosity, **write_pars) else: raise ValueError( f"Unknown data format '{format}', choices: numpy, pandas, xarray" ) def _calc_mean_data( self, ori, data_format, variables, a_pos, b_pos, c_pos, g_pts, normalize_a, normalize_b, normalize_c, normalize_v, label_map, vmin, vmax, weight_turbine, to_file, write_pars, ret_states, verbosity, **kwargs, ): """Helper function for mean data calculation""" # calculate point results: point_results = grids.calc_point_results( algo=self.algo, farm_results=self.fres, g_pts=g_pts, verbosity=verbosity - self.verbosity_delta, **kwargs, ) states = point_results[FC.STATE].to_numpy() if variables is None: variables = list(point_results.data_vars.keys()) else: point_results.drop_vars(variables) del g_pts # take mean over states: weights = self.fres[FV.WEIGHT][:, weight_turbine].to_numpy() data = { v: np.einsum("s,sp->p", weights, point_results[v].to_numpy()) for v in variables } del point_results # apply data modification: a_pos, b_pos, c_pos, data = self._data_mod( a_pos, b_pos, c_pos, data, normalize_a, normalize_b, normalize_c, normalize_v, vmin, vmax, ) # translate to selected format: if data_format == "numpy": data = grids.np2np_p(data, a_pos, b_pos) self._write(data_format, data, to_file, verbosity, **write_pars) elif data_format == "pandas": data = grids.np2pd_p(data, a_pos, b_pos, ori, label_map) self._write(data_format, data, to_file, verbosity, **write_pars) elif data_format == "xarray": data = grids.np2xr_p(data, a_pos, b_pos, c_pos, ori, label_map) self._write(data_format, data, to_file, verbosity, **write_pars) else: raise ValueError( f"Unknown data format '{data_format}', choices: numpy, pandas, xarray" ) return (data, states) if ret_states else data
[docs] def get_mean_data_xy( self, resolution=None, n_img_points=None, variables=None, data_format="xarray", xmin=None, ymin=None, xmax=None, ymax=None, z=None, xspace=500.0, yspace=500.0, normalize_x=None, normalize_y=None, normalize_z=None, normalize_v={}, label_map={}, vmin={}, vmax={}, states_sel=None, states_isel=None, weight_turbine=0, to_file=None, write_pars={}, ret_states=False, ret_grid=False, verbosity=0, **kwargs, ): """ Creates mean data of 2D farm flow slices in a horizontal xy-plane. Parameters ---------- resolution: float, optional The resolution in m n_img_points: tuple of int, optional The number of image points (n, m) in the two directions variables: list of str, optional The variables, or None for all data_format: str The output data format: numpy, pandas, xarray xmin: float, optional The min x coordinate, or None for automatic ymin: float, optional The min y coordinate, or None for automatic xmax: float, optional The max x coordinate, or None for automatic ymax: float, optional The max y coordinate, or None for automatic z: float, optional The z coordinate of the plane xspace: float, optional The extra space in x direction, before and after wind farm yspace: float, optional The extra space in y direction, before and after wind farm normalize_x: float, optional Divide x by this value normalize_y: float, optional Divide y by this value normalize_z: float, optional Divide z by this value normalize_v: dict, optional Divide the variables by these values label_map: dict The mapping from original to new field names vmin: dict Minimal values for variables vmax: dict Maximal values for variables states_sel: list, optional Reduce to selected states states_isel: list, optional Reduce to the selected states indices weight_turbine: int, optional Index of the turbine from which to take the weight to_file: str, optional Write data to this file name write_pars: dict Additional write function parameters ret_states: bool Flag for returning states indices ret_grid: bool Flag for returning grid data verbosity: int, optional The verbosity level, 0 = silent kwargs: dict, optional Parameters forwarded to the algorithm's calc_points function. Returns ------- data: dict or pandas.DataFrame or xarray.Dataset The gridded data states: numpy.ndarray, optional The states indices grid_data: tuple, optional The grid data (x_pos, y_pos, z_pos, g_pts) """ gdata = grids.get_grid_xy( farm_results=self.fres, resolution=resolution, n_img_points=n_img_points, xmin=xmin, ymin=ymin, xmax=xmax, ymax=ymax, z=z, xspace=xspace, yspace=yspace, states_sel=states_sel, states_isel=states_isel, verbosity=verbosity - self.verbosity_delta, ) data = self._calc_mean_data( "xy", data_format, variables, *gdata, normalize_x, normalize_y, normalize_z, normalize_v, label_map, vmin, vmax, weight_turbine, to_file, write_pars, ret_states, verbosity, states_sel=states_sel, states_isel=states_isel, **kwargs, ) if ret_grid: out = list(data) if ret_states else [data] return tuple(out + [gdata]) return data
[docs] def get_mean_data_xz( self, resolution=None, n_img_points=None, variables=None, data_format="xarray", x_direction=270, xmin=None, zmin=0.0, xmax=None, zmax=None, y=None, xspace=500.0, zspace=500.0, normalize_x=None, normalize_y=None, normalize_z=None, normalize_v={}, label_map={}, vmin={}, vmax={}, states_sel=None, states_isel=None, weight_turbine=0, to_file=None, write_pars={}, ret_states=False, ret_grid=False, verbosity=0, **kwargs, ): """ Creates mean data of 2D farm flow slices in an xz-plane. Parameters ---------- resolution: float, optional The resolution in m n_img_points: tuple of int, optional The number of image points (n, m) in the two directions variables: list of str, optional The variables, or None for all data_format: str The output data format: numpy, pandas, xarray x_direction: float, optional The direction of the x axis, 0 = north xmin: float, optional The min x coordinate, or None for automatic zmin: float, optional The min z coordinate xmax: float, optional The max x coordinate, or None for automatic zmax: float, optional The max z coordinate, or None for automatic y: float, optional The y coordinate of the plane xspace: float, optional The extra space in x direction, before and after wind farm zspace: float, optional The extra space in z direction, below and above wind farm normalize_x: float, optional Divide x by this value normalize_y: float, optional Divide y by this value normalize_z: float, optional Divide z by this value normalize_v: dict, optional Divide the variables by these values label_map: dict The mapping from original to new field names vmin: dict Minimal values for variables vmax: dict Maximal values for variables states_sel: list, optional Reduce to selected states states_isel: list, optional Reduce to the selected states indices weight_turbine: int, optional Index of the turbine from which to take the weight to_file: str, optional Write data to this file name write_pars: dict Additional write function parameters ret_states: bool Flag for returning states indices ret_grid: bool Flag for returning grid data verbosity: int, optional The verbosity level, 0 = silent kwargs: dict, optional Parameters forwarded to the algorithm's calc_points function. Returns ------- data: dict or pandas.DataFrame or xarray.Dataset The gridded data states: numpy.ndarray, optional The states indices grid_data: tuple, optional The grid data (x_pos, y_pos, z_pos, g_pts) """ gdata = grids.get_grid_xz( farm_results=self.fres, resolution=resolution, n_img_points=n_img_points, x_direction=x_direction, xmin=xmin, zmin=zmin, xmax=xmax, zmax=zmax, y=y, xspace=xspace, zspace=zspace, states_sel=states_sel, states_isel=states_isel, verbosity=verbosity - self.verbosity_delta, ) gdatb = (gdata[0], gdata[2], gdata[1], gdata[3]) data = self._calc_mean_data( "xz", data_format, variables, *gdatb, normalize_x, normalize_z, normalize_y, normalize_v, label_map, vmin, vmax, weight_turbine, to_file, write_pars, ret_states, verbosity, states_sel=states_sel, states_isel=states_isel, **kwargs, ) if ret_grid: out = list(data) if ret_states else [data] return tuple(out + [gdata]) return data
[docs] def get_mean_data_yz( self, resolution=None, n_img_points=None, variables=None, data_format="xarray", x_direction=270, ymin=None, zmin=0.0, ymax=None, zmax=None, x=None, yspace=500.0, zspace=500.0, normalize_x=None, normalize_y=None, normalize_z=None, normalize_v={}, label_map={}, vmin={}, vmax={}, states_sel=None, states_isel=None, weight_turbine=0, to_file=None, write_pars={}, ret_states=False, ret_grid=False, verbosity=0, **kwargs, ): """ Creates mean data of 2D farm flow slices in a yz-plane. Parameters ---------- resolution: float, optional The resolution in m n_img_points: tuple of int, optional The number of image points (n, m) in the two directions variables: list of str, optional The variables, or None for all data_format: str The output data format: numpy, pandas, xarray x_direction: float, optional The direction of the x axis, 0 = north ymin: float, optional The min y coordinate, or None for automatic zmin: float, optional The min z coordinate ymax: float, optional The max y coordinate, or None for automatic zmax: float, optional The max z coordinate, or None for automatic x: float, optional The x coordinate of the plane yspace: float, optional The extra space in y direction, before and after wind farm zspace: float, optional The extra space in z direction, below and above wind farm normalize_x: float, optional Divide x by this value normalize_y: float, optional Divide y by this value normalize_z: float, optional Divide z by this value normalize_v: dict, optional Divide the variables by these values label_map: dict The mapping from original to new field names vmin: dict Minimal values for variables vmax: dict Maximal values for variables states_sel: list, optional Reduce to selected states states_isel: list, optional Reduce to the selected states indices weight_turbine: int, optional Index of the turbine from which to take the weight to_file: str, optional Write data to this file name write_pars: dict Additional write function parameters ret_states: bool Flag for returning states indices ret_grid: bool Flag for returning grid data verbosity: int, optional The verbosity level, 0 = silent kwargs: dict, optional Parameters forwarded to the algorithm's calc_points function. Returns ------- data: dict or pandas.DataFrame or xarray.Dataset The gridded data states: numpy.ndarray, optional The states indices grid_data: tuple, optional The grid data (x_pos, y_pos, z_pos, g_pts) """ gdata = grids.get_grid_yz( farm_results=self.fres, resolution=resolution, n_img_points=n_img_points, x_direction=x_direction, ymin=ymin, zmin=zmin, ymax=ymax, zmax=zmax, x=x, yspace=yspace, zspace=zspace, states_sel=states_sel, states_isel=states_isel, verbosity=verbosity - self.verbosity_delta, ) gdatb = (gdata[1], gdata[2], gdata[0], gdata[3]) data = self._calc_mean_data( "yz", data_format, variables, *gdatb, normalize_y, normalize_z, normalize_x, normalize_v, label_map, vmin, vmax, weight_turbine, to_file, write_pars, ret_states, verbosity, states_sel=states_sel, states_isel=states_isel, **kwargs, ) if ret_grid: out = list(data) if ret_states else [data] return tuple(out + [gdata]) return data
def _calc_states_data( self, ori, data_format, variables, a_pos, b_pos, c_pos, g_pts, normalize_a, normalize_b, normalize_c, normalize_v, label_map, vmin, vmax, to_file, write_pars, ret_states, verbosity, **kwargs, ): """Helper function for states data calculation""" # calculate point results: point_results = grids.calc_point_results( algo=self.algo, farm_results=self.fres, g_pts=g_pts, verbosity=verbosity - self.verbosity_delta, **kwargs, ) states = point_results[FC.STATE].to_numpy() if variables is None: variables = list(point_results.data_vars.keys()) else: point_results.drop_vars(variables) del g_pts # convert to numpy: data = {v: point_results[v].to_numpy() for v in variables} del point_results # apply data modification: a_pos, b_pos, c_pos, data = self._data_mod( a_pos, b_pos, c_pos, data, normalize_a, normalize_b, normalize_c, normalize_v, vmin, vmax, ) # translate to selected format: if data_format == "numpy": data = grids.np2np_sp(data, states, a_pos, b_pos) self._write(data_format, data, to_file, verbosity, **write_pars) elif data_format == "pandas": data = grids.np2pd_sp(data, states, a_pos, b_pos, ori, label_map) self._write(data_format, data, to_file, verbosity, **write_pars) elif data_format == "xarray": data = grids.np2xr_sp(data, states, a_pos, b_pos, c_pos, ori, label_map) self._write(data_format, data, to_file, verbosity, **write_pars) else: raise ValueError( f"Unknown data format '{data_format}', choices: numpy, pandas, xarray" ) return (data, states) if ret_states else data
[docs] def get_states_data_xy( self, resolution=None, n_img_points=None, variables=None, data_format="xarray", xmin=None, ymin=None, xmax=None, ymax=None, z=None, xspace=500.0, yspace=500.0, normalize_x=None, normalize_y=None, normalize_z=None, normalize_v={}, label_map={}, vmin={}, vmax={}, states_sel=None, states_isel=None, to_file=None, write_pars={}, ret_states=False, ret_grid=False, verbosity=0, **kwargs, ): """ Creates states data of 2D farm flow slices in a horizontal xy-plane. Parameters ---------- resolution: float, optional The resolution in m n_img_points: tuple of int, optional The number of image points (n, m) in the two directions variables: list of str, optional The variables, or None for all data_format: str The output data format: numpy, pandas, xarray xmin: float, optional The min x coordinate, or None for automatic ymin: float, optional The min y coordinate, or None for automatic xmax: float, optional The max x coordinate, or None for automatic ymax: float, optional The max y coordinate, or None for automatic z: float, optional The z coordinate of the plane xspace: float, optional The extra space in x direction, before and after wind farm yspace: float, optional The extra space in y direction, before and after wind farm normalize_x: float, optional Divide x by this value normalize_y: float, optional Divide y by this value normalize_z: float, optional Divide z by this value normalize_v: dict, optional Divide the variables by these values label_map: dict The mapping from original to new field names vmin: dict Minimal values for variables vmax: dict Maximal values for variables states_sel: list, optional Reduce to selected states states_isel: list, optional Reduce to the selected states indices to_file: str, optional Write data to this file name write_pars: dict Additional write function parameters ret_states: bool Flag for returning states indices ret_grid: bool Flag for returning grid data verbosity: int, optional The verbosity level, 0 = silent kwargs: dict, optional Parameters forwarded to the algorithm's calc_points function. Returns ------- data: dict or pandas.DataFrame or xarray.Dataset The gridded data states: numpy.ndarray, optional The states indices grid_data: tuple, optional The grid data (x_pos, y_pos, z_pos, g_pts) """ gdata = grids.get_grid_xy( farm_results=self.fres, resolution=resolution, n_img_points=n_img_points, xmin=xmin, ymin=ymin, xmax=xmax, ymax=ymax, z=z, xspace=xspace, yspace=yspace, states_sel=states_sel, states_isel=states_isel, verbosity=verbosity - self.verbosity_delta, ) data = self._calc_states_data( "xy", data_format, variables, *gdata, normalize_x, normalize_y, normalize_z, normalize_v, label_map, vmin, vmax, to_file, write_pars, ret_states, verbosity, states_sel=states_sel, states_isel=states_isel, **kwargs, ) if ret_grid: out = list(data) if ret_states else [data] return tuple(out + [gdata]) return data
[docs] def get_states_data_xz( self, resolution=None, n_img_points=None, variables=None, data_format="xarray", x_direction=270, xmin=None, zmin=0.0, xmax=None, zmax=None, y=None, xspace=500.0, zspace=500.0, normalize_x=None, normalize_y=None, normalize_z=None, normalize_v={}, label_map={}, vmin={}, vmax={}, states_sel=None, states_isel=None, to_file=None, write_pars={}, ret_states=False, ret_grid=False, verbosity=0, **kwargs, ): """ Creates states data of 2D farm flow slices in an xz-plane. Parameters ---------- resolution: float, optional The resolution in m n_img_points: tuple of int, optional The number of image points (n, m) in the two directions variables: list of str, optional The variables, or None for all data_format: str The output data format: numpy, pandas, xarray x_direction: float, optional The direction of the x axis, 0 = north xmin: float, optional The min x coordinate, or None for automatic zmin: float, optional The min z coordinate xmax: float, optional The max x coordinate, or None for automatic zmax: float, optional The max z coordinate, or None for automatic y: float, optional The y coordinate of the plane xspace: float, optional The extra space in x direction, before and after wind farm zspace: float, optional The extra space in z direction, below and above wind farm normalize_x: float, optional Divide x by this value normalize_y: float, optional Divide y by this value normalize_z: float, optional Divide z by this value normalize_v: dict, optional Divide the variables by these values label_map: dict The mapping from original to new field names vmin: dict Minimal values for variables vmax: dict Maximal values for variables states_sel: list, optional Reduce to selected states states_isel: list, optional Reduce to the selected states indices to_file: str, optional Write data to this file name write_pars: dict Additional write function parameters ret_states: bool Flag for returning states indices ret_grid: bool Flag for returning grid data verbosity: int, optional The verbosity level, 0 = silent kwargs: dict, optional Parameters forwarded to the algorithm's calc_points function. Returns ------- data: dict or pandas.DataFrame or xarray.Dataset The gridded data states: numpy.ndarray, optional The states indices grid_data: tuple, optional The grid data (x_pos, y_pos, z_pos, g_pts) """ gdata = grids.get_grid_xz( farm_results=self.fres, resolution=resolution, n_img_points=n_img_points, x_direction=x_direction, xmin=xmin, zmin=zmin, xmax=xmax, zmax=zmax, y=y, xspace=xspace, zspace=zspace, states_sel=states_sel, states_isel=states_isel, verbosity=verbosity - self.verbosity_delta, ) gdatb = (gdata[0], gdata[2], gdata[1], gdata[3]) data = self._calc_states_data( "xz", data_format, variables, *gdatb, normalize_x, normalize_z, normalize_y, normalize_v, label_map, vmin, vmax, to_file, write_pars, ret_states, verbosity, states_sel=states_sel, states_isel=states_isel, **kwargs, ) if ret_grid: out = list(data) if ret_states else [data] return tuple(out + [gdata]) return data
[docs] def get_states_data_yz( self, resolution=None, n_img_points=None, variables=None, data_format="xarray", x_direction=270, ymin=None, zmin=0.0, ymax=None, zmax=None, x=None, yspace=500.0, zspace=500.0, normalize_x=None, normalize_y=None, normalize_z=None, normalize_v={}, label_map={}, vmin={}, vmax={}, states_sel=None, states_isel=None, to_file=None, write_pars={}, ret_states=False, ret_grid=False, verbosity=0, **kwargs, ): """ Creates states data of 2D farm flow slices in a yz-plane. Parameters ---------- resolution: float, optional The resolution in m n_img_points: tuple of int, optional The number of image points (n, m) in the two directions variables: list of str, optional The variables, or None for all data_format: str The output data format: numpy, pandas, xarray x_direction: float, optional The direction of the x axis, 0 = north ymin: float, optional The min y coordinate, or None for automatic zmin: float, optional The min z coordinate ymax: float, optional The max y coordinate, or None for automatic zmax: float, optional The max z coordinate, or None for automatic x: float, optional The x coordinate of the plane yspace: float, optional The extra space in y direction, before and after wind farm zspace: float, optional The extra space in z direction, below and above wind farm normalize_x: float, optional Divide x by this value normalize_y: float, optional Divide y by this value normalize_z: float, optional Divide z by this value normalize_v: dict, optional Divide the variables by these values label_map: dict The mapping from original to new field names vmin: dict Minimal values for variables vmax: dict Maximal values for variables states_sel: list, optional Reduce to selected states states_isel: list, optional Reduce to the selected states indices to_file: str, optional Write data to this file name write_pars: dict Additional write function parameters ret_states: bool Flag for returning states indices ret_grid: bool Flag for returning grid data verbosity: int, optional The verbosity level, 0 = silent kwargs: dict, optional Parameters forwarded to the algorithm's calc_points function. Returns ------- data: dict or pandas.DataFrame or xarray.Dataset The gridded data states: numpy.ndarray, optional The states indices grid_data: tuple, optional The grid data (x_pos, y_pos, z_pos, g_pts) """ gdata = grids.get_grid_yz( farm_results=self.fres, resolution=resolution, n_img_points=n_img_points, x_direction=x_direction, ymin=ymin, zmin=zmin, ymax=ymax, zmax=zmax, x=x, yspace=yspace, zspace=zspace, states_sel=states_sel, states_isel=states_isel, verbosity=verbosity - self.verbosity_delta, ) gdatb = (gdata[1], gdata[2], gdata[0], gdata[3]) data = self._calc_states_data( "yz", data_format, variables, *gdatb, normalize_y, normalize_z, normalize_x, normalize_v, label_map, vmin, vmax, to_file, write_pars, ret_states, verbosity, states_sel=states_sel, states_isel=states_isel, **kwargs, ) if ret_grid: out = list(data) if ret_states else [data] return tuple(out + [gdata]) return data