-
foxes.engines.NumpyEngine.run_calculation(algo, model, model_data, farm_data=
None, point_data=None, out_vars=[], chunk_store={}, sel=None, isel=None, iterative=False, write_nc=None, write_chunk_ani=None, **calc_pars)[source] Runs the model calculation
Parameters¶
- algo: foxes.core.Algorithm
The algorithm object
- model: foxes.core.DataCalcModel
The model that whose calculate function should be run
- model_data: xarray.Dataset
The initial model data
- farm_data: xarray.Dataset, optional
The initial farm data
- point_data: xarray.Dataset, optional
The initial point data
- out_vars: list of str, optional
Names of the output variables
- chunk_store: foxes.utils.Dict
The chunk store
- sel: dict, optional
Selection of coordinate subsets
- isel: dict, optional
Selection of coordinate subsets index values
- iterative: bool
Flag for use within the iterative algorithm
- write_nc: dict, optional
Parameters for writing results to netCDF files, e.g. {‘out_dir’: ‘results’, ‘base_name’: ‘calc_results’, ‘ret_data’: False, ‘split’: 1000}.
The split parameter controls how the output is split: - ‘chunks’: one file per chunk (fastest method), - ‘input’: split according to sizes of multiple states input files, - int: split with this many states per file, - None: create a single output file.
Use ret_data = False together with non-single file writing to avoid constructing the full Dataset in memory.
- write_chunk_ani: dict, optional
Parameters for writing chunk animations, e.g. {‘fpath_base’: ‘results/chunk_animation’, ‘vars’: [‘WS’], ‘resolution’: 100, ‘chunk’: 5}.’} The chunk is either an integer that refers to a states chunk, or a tuple (states_chunk_index, points_chunk_index), or a list of such entries.
- calc_pars: dict, optional
Additional parameters for the model.calculate()
Returns¶
- results: xarray.Dataset
The model results