- class foxes.input.states.FieldData(foxes.input.states.DatasetStates)[source]
Heterogeneous ambient states on a regular horizontal grid in NetCDF format.
Attributes¶
- states_coord: str
The states coordinate name in the data
- x_coord: str
The x coordinate name in the data
- y_coord: str
The y coordinate name in the data
- h_coord: str
The height coordinate name in the data
- weight_ncvar: str
Name of the weight data variable in the nc file(s)
- bounds_extra_space: float or str
The extra space, either float in m, or str for units of D, e.g. ‘2.5D’
- height_bounds: tuple, optional
The (h_min, h_max) height bounds in m. Defaults to H +/- 0.5*D
Examples¶
Simplistic example of the NetCDF structure:
>>> Dimensions: (state: 2, h: 2, y: 2, x: 2) >>> Coordinates: >>> * state (state) int32 8B 0 1 >>> * h (h) float32 8B 0.0 300.0 >>> * y (y) float32 8B 0.0 2.5e+03 >>> * x (x) float32 8B 0.0 2.5e+03 >>> Data variables: >>> ws (state, h, y, x) float32 64B ... >>> wd (state, h, y, x) float32 64B ...Public members¶
-
FieldData(*args, states_coord=
'Time', x_coord='UTMX', ...)[source] Constructor.
- property data_source
The data source
- preproc_first(algo, data, cmap, vars, bounds_extra_space, ...)[source]
Preprocesses the first file.
- gen_states_split_size()[source]
Generator for suggested states split sizes for output writing.
-
set_running(algo, data_stash, sel=
None, isel=None, verbosity=0)[source] Sets this model status to running, and moves all large data to stash.
-
unset_running(algo, data_stash, sel=
None, isel=None, verbosity=0)[source] Sets this model status to not running, recovering large data from stash
- output_point_vars(algo)[source]
The variables which are being modified by the model.
- get_calc_data(mdata, cmap, variables)[source]
Gathers data for calculations.
-
reset(algo=
None, states_sel=None, states_loc=None, verbosity=0)[source] Reset the states, optionally select states
- classmethod new(states_type, *args, **kwargs)[source]
Run-time states factory.
- output_coords()[source]
Gets the coordinates of all output arrays
- ensure_output_vars(algo, tdata)[source]
Ensures that the output variables are present in the target data.
- run_calculation(algo, *data, out_vars, **calc_pars)[source]
Starts the model calculation in parallel.
- property model_id
Unique id based on the model type.
- property initialized
Initialization flag.
- sub_models()[source]
List of all sub-models
-
initialize(algo, verbosity=
0, force=False)[source] Initializes the model.
- property running
Flag for currently running models
-
get_data(variable, target, lookup=
'smfp', mdata=None, ...)[source] Getter for a data entry in the model object or provided data sources