class iwopy.benchmarks.branin.BraninProblem(iwopy.wrappers.SimpleProblem)[source]

Problem definition of benchmark function Branin.

Attributes

initial_values: list of float

The initial values

Public members

BraninProblem(name='branin', initial_values=[1.0, 1.0], ...)[source]

Constructor

var_names_int()[source]

The names of integer variables.

initial_values_int()[source]

The initial values of the integer variables.

min_values_int()[source]

The minimal values of the integer variables.

max_values_int()[source]

The maximal values of the integer variables.

var_names_float()[source]

The names of float variables.

initial_values_float()[source]

The initial values of the float variables.

min_values_float()[source]

The minimal values of the float variables.

max_values_float()[source]

The maximal values of the float variables.

INT_INF = -999999
property n_vars_int

The number of int variables

property n_vars_float

The number of float variables

add_objective(objective, varmap_int=None, varmap_float=None, ...)[source]

Add an objective to the problem.

add_constraint(constraint, varmap_int=None, varmap_float=None, ...)[source]

Add a constraint to the problem.

property min_values_constraints

Gets the minimal values of constraints

property max_values_constraints

Gets the maximal values of constraints

property constraints_tol

Gets the tolerance values of constraints

property n_objectives

The total number of objectives, i.e., the sum of all components

property n_constraints

The total number of constraints, i.e., the sum of all components

calc_gradients(vars_int, vars_float, func, components, ivars, ...)[source]

The actual gradient calculation, not to be called directly (call get_gradients instead).

get_gradients(vars_int, vars_float, func=None, components=None, ...)[source]

Obtain gradients of a function that is linked to the problem.

initialize(verbosity=1)[source]

Initialize the problem.

property maximize_objs

Flags for objective maximization

apply_individual(vars_int, vars_float)[source]

Apply new variables to the problem.

apply_population(vars_int, vars_float)[source]

Apply new variables to the problem, for a whole population.

evaluate_individual(vars_int, vars_float, ret_prob_res=False)[source]

Evaluate a single individual of the problem.

evaluate_population(vars_int, vars_float, ret_prob_res=False)[source]

Evaluate all individuals of a population.

check_constraints_individual(constraint_values, verbosity=0)[source]

Check if the constraints are fullfilled for the given individual.

check_constraints_population(constraint_values, verbosity=0)[source]

Check if the constraints are fullfilled for the given population.

finalize_individual(vars_int, vars_float, verbosity=1)[source]

Finalization, given the champion data.

finalize_population(vars_int, vars_float, verbosity=0)[source]

Finalization, given the final population data.

prob_res_einsum_individual(prob_res_list, coeffs)[source]

Calculate the einsum of problem results

prob_res_einsum_population(prob_res_list, coeffs)[source]

Calculate the einsum of problem results

__str__()[source]

Get info string

property initialized

Flag for finished initialization

finalize(verbosity=0)[source]

Finalize the object.