iwopy.core.function.OptFunction

class iwopy.core.function.OptFunction[source]

Bases: Base

Abstract base class for functions that calculate scalars based on a problem.

Parameters:
  • problem (iwopy.Problem) – The underlying optimization problem

  • name (str) – The function name

  • n_vars_int (int, optional) – The number of integer variables. If not specified it is assumed that the function depends on all problem int variables

  • n_vars_float (int, optional) – The number of float variables. If not specified it is assumed that the function depends on all problem float variables

  • vnames_int (list of str, optional) – The integer variable names. Useful for mapping function variables to problem variables, otherwise map by integer or default name

  • vnames_float (list of str, optional) – The float variable names. Useful for mapping function variables to problem variables, otherwise map by integer or default name

  • cnames (list of str, optional) – The names of the components

problem

The underlying optimization problem

Type:

iwopy.Problem

__init__(problem, name, n_vars_int=None, n_vars_float=None, vnames_int=None, vnames_float=None, cnames=None)[source]

Methods

__init__(problem, name[, n_vars_int, ...])

ana_deriv(vars_int, vars_float, var[, ...])

Calculates the analytic derivative, if possible.

calc_individual(vars_int, vars_float, ...[, ...])

Calculate values for a single individual of the underlying problem.

calc_population(vars_int, vars_float, ...[, ...])

Calculate values for all individuals of a population.

finalize([verbosity])

Finalize the object.

finalize_individual(vars_int, vars_float, ...)

Finalization, given the champion data.

finalize_population(vars_int, vars_float, ...)

Finalization, given the final population data.

initialize([verbosity])

Initialize the object.

n_components()

Returns the number of components of the function.

rename_vars_float(varmap)

Rename float variables.

rename_vars_int(varmap)

Rename integer variables.

vardeps_float()

Gets the dependencies of all components on the function float variables

vardeps_int()

Gets the dependencies of all components on the function int variables

Attributes

component_names

The names of the components

initialized

Flag for finished initialization

n_vars_float

The number of float variables

n_vars_int

The number of int variables

var_names_float

The names of the float variables

var_names_int

The names of the integer variables

__init__(problem, name, n_vars_int=None, n_vars_float=None, vnames_int=None, vnames_float=None, cnames=None)[source]
ana_deriv(vars_int, vars_float, var, components=None)[source]

Calculates the analytic derivative, if possible.

Use numpy.nan if analytic derivatives cannot be calculated.

Parameters:
  • vars_int (np.array) – The integer variable values, shape: (n_vars_int,)

  • vars_float (np.array) – The float variable values, shape: (n_vars_float,)

  • var (int) – The index of the differentiation float variable

  • components (list of int) – The selected components, or None for all

Returns:

deriv – The derivative values, shape: (n_sel_components,)

Return type:

numpy.ndarray

calc_individual(vars_int, vars_float, problem_results, components=None)[source]

Calculate values for a single individual of the underlying problem.

Parameters:
  • vars_int (np.array) – The integer variable values, shape: (n_vars_int,)

  • vars_float (np.array) – The float variable values, shape: (n_vars_float,)

  • problem_results (Any) – The results of the variable application to the problem

  • components (list of int, optional) – The selected components or None for all

Returns:

values – The component values, shape: (n_sel_components,)

Return type:

np.array

calc_population(vars_int, vars_float, problem_results, components=None)[source]

Calculate values for all individuals of a population.

Parameters:
  • vars_int (np.array) – The integer variable values, shape: (n_pop, n_vars_int)

  • vars_float (np.array) – The float variable values, shape: (n_pop, n_vars_float)

  • problem_results (Any) – The results of the variable application to the problem

  • components (list of int, optional) – The selected components or None for all

Returns:

values – The component values, shape: (n_pop, n_sel_components)

Return type:

np.array

property component_names

The names of the components

Returns:

names – The component names

Return type:

list of str

finalize(verbosity=0)

Finalize the object.

Parameters:

verbosity (int) – The verbosity level, 0 = silent

finalize_individual(vars_int, vars_float, problem_results, verbosity=1)[source]

Finalization, given the champion data.

Parameters:
  • vars_int (np.array) – The optimal integer variable values, shape: (n_vars_int,)

  • vars_float (np.array) – The optimal float variable values, shape: (n_vars_float,)

  • problem_results (Any) – The results of the variable application to the problem

  • verbosity (int) – The verbosity level, 0 = silent

Returns:

values – The component values, shape: (n_components,)

Return type:

np.array

finalize_population(vars_int, vars_float, problem_results, verbosity=1)[source]

Finalization, given the final population data.

Parameters:
  • vars_int (np.array) – The integer variable values of the final generation, shape: (n_pop, n_vars_int)

  • vars_float (np.array) – The float variable values of the final generation, shape: (n_pop, n_vars_float)

  • problem_results (Any) – The results of the variable application to the problem

  • verbosity (int) – The verbosity level, 0 = silent

Returns:

values – The component values, shape: (n_pop, n_components)

Return type:

np.array

initialize(verbosity=0)[source]

Initialize the object.

Parameters:

verbosity (int) – The verbosity level, 0 = silent

property initialized

Flag for finished initialization

Returns:

True if initialization has been done

Return type:

bool

abstract n_components()[source]

Returns the number of components of the function.

Returns:

The number of components.

Return type:

int

property n_vars_float

The number of float variables

Returns:

n – The number of float variables

Return type:

int

property n_vars_int

The number of int variables

Returns:

n – The number of int variables

Return type:

int

rename_vars_float(varmap)[source]

Rename float variables.

Parameters:

varmap (dict) – The name mapping. Key: old name str, Value: new name str

rename_vars_int(varmap)[source]

Rename integer variables.

Parameters:

varmap (dict) – The name mapping. Key: old name str, Value: new name str

property var_names_float

The names of the float variables

Returns:

names – The float variable names

Return type:

list of str

property var_names_int

The names of the integer variables

Returns:

names – The integer variable names

Return type:

list of str

vardeps_float()[source]

Gets the dependencies of all components on the function float variables

Returns:

deps – The dependencies of components on function variables, shape: (n_components, n_vars_float)

Return type:

numpy.ndarray of bool

vardeps_int()[source]

Gets the dependencies of all components on the function int variables

Returns:

deps – The dependencies of components on function variables, shape: (n_components, n_vars_int)

Return type:

numpy.ndarray of bool