iwopy.core.opt_results.MultiObjOptResults
- class iwopy.core.opt_results.MultiObjOptResults[source]
Bases:
object
Container for optimization results for multi objective problems.
- Parameters:
problem (iwopy.core.Problem) – The problem
success (bool) – Optimization success
vars_int (np.array) – Pareto-optimal variables, shape: (n_pop, n_vars_int)
vars_float (np.array) – Pareto-optimal variables, shape: (n_pop, n_vars_float)
objs (np.array) – Pareto front objective function values, shape: (n_pop, n_objectives)
cons (np.array) – Parteo front Constraint values, shape: (n_pop, n_constraints)
problem_results (Object) – The results of the variable application to the problem
- vars_int
Pareto-optimal variables, shape: (n_pop, n_vars_int)
- Type:
np.array
- vars_float
Pareto-optimal variables, shape: (n_pop, n_vars_float)
- Type:
np.array
- objs
Pareto front objective function values, shape: (n_pop, n_objectives)
- Type:
np.array
- cons
Parteo front Constraint values, shape: (n_pop, n_constraints)
- Type:
np.array
- problem_results
The results of the variable application to the problem
- Type:
Object
Methods
__init__
(problem, success, vars_int, ...)find_pareto_objmix
(obj_weights[, max])Find the point on the pareto front that approximates best the given weights of objectives
plot_pareto
([obj_0, obj_1, ax, figsize, s, ...])Get figure that shows the pareto front
- find_pareto_objmix(obj_weights, max=False)[source]
Find the point on the pareto front that approximates best the given weights of objectives
Paramters
- obj_weightslist of float
The weights of the objectives
- maxbool
Find the maximal value of the weighted result (otherwise find the minimal value)
- returns:
index – The index in the pareto front results
- rtype:
int
- plot_pareto(obj_0=0, obj_1=1, ax=None, figsize=(5, 5), s=50, color_val='orange', color_ival='red', title=None)[source]
Get figure that shows the pareto front
- Parameters:
obj_0 (int) – The objective on the x axis
obj_1 (int) – The objective on the y axis
ax (pyplot.Axis, optional) – The axis to plot on
figsize (tuple) – The figure size, if ax is not given
s (float) – Scatter point size
color_val (str) – Color choice for valid points
color_ival (str) – Color choice for invalid points
title (str, optional) – The plot title
- Returns:
ax – The plot axis
- Return type:
pyplot.axis