iwopy.wrappers.discretize_reg_grid.DiscretizeRegGrid
- class iwopy.wrappers.discretize_reg_grid.DiscretizeRegGrid[source]
Bases:
LocalFD
A wrapper that provides finite distance differentiation on a regular grid for selected or all problem float variables.
- Parameters:
base_problem (iwopy.Problem) – The underlying concrete problem
deltas (dict) – The step sizes. Key: variable name str, Value: step size. Will be adjusted to the variable bounds if necessary.
fd_order (dict or int) – Finite difference order. Either a dict with key: variable name str, value: order int, or a global integer order for all variables. 1 = forward, -1 = backward, 2 = centre
fd_bounds_order (dict or int) – Finite difference order of boundary points. Either a dict with key: variable name str, value: order int, or a global integer order for all variables. Default is same as fd_order
mem_size (int, optional) – The memory size, default no memory
name (str, optional) – The problem name
dpars (dict, optional) – Additional parameters for RegularDiscretizationGrid
- grid
The discretization grid
- Type:
iwopy.tools.RegularDiscretizationGrid
- order
Finite difference order. Key: variable name str, value: 1 = forward, -1 = backward, 2 = centre
- Type:
- orderb
Finite difference order of boundary points. Key: variable name str, value: order int
- __init__(base_problem, deltas, fd_order=1, fd_bounds_order=1, mem_size=1000, name=None, **dpars)[source]
Methods
__init__
(base_problem, deltas[, fd_order, ...])add_constraint
(constraint[, varmap_int, ...])Add a constraint to the problem.
add_objective
(objective[, varmap_int, ...])Add an objective to the problem.
apply_individual
(vars_int, vars_float)Apply new variables to the problem.
apply_population
(vars_int, vars_float)Apply new variables to the problem, for a whole population.
calc_gradients
(vars_int, vars_float, func, ...)The actual gradient calculation, not to be called directly (call get_gradients instead).
check_constraints_individual
(constraint_values)Check if the constraints are fullfilled for the given individual.
check_constraints_population
(constraint_values)Check if the constraints are fullfilled for the given population.
evaluate_individual
(vars_int, vars_float[, ...])Evaluate a single individual of the problem.
evaluate_population
(vars_int, vars_float[, ...])Evaluate all individuals of a population.
finalize
([verbosity])Finalize the object.
finalize_individual
(vars_int, vars_float[, ...])Finalization, given the champion data.
finalize_population
(vars_int, vars_float[, ...])Finalization, given the final population data.
get_gradients
(vars_int, vars_float[, func, ...])Obtain gradients of a function that is linked to the problem.
The initial values of the float variables.
The initial values of the integer variables.
initialize
([verbosity])Initialize the problem.
The maximal values of the float variables.
The maximal values of the integer variables.
The minimal values of the float variables.
The minimal values of the integer variables.
prob_res_einsum_individual
(prob_res_list, coeffs)Calculate the einsum of problem results
prob_res_einsum_population
(prob_res_list, coeffs)Calculate the einsum of problem results
The names of float variables.
The names of integer variables.
Attributes
INT_INF
Gets the tolerance values of constraints
Flag for finished initialization
Gets the maximal values of constraints
Flags for objective maximization
Gets the minimal values of constraints
The total number of constraints, i.e., the sum of all components
The total number of objectives, i.e., the sum of all components
The number of float variables
The number of int variables
- __init__(base_problem, deltas, fd_order=1, fd_bounds_order=1, mem_size=1000, name=None, **dpars)[source]
- add_constraint(constraint, varmap_int=None, varmap_float=None, verbosity=0)
Add a constraint to the problem.
- Parameters:
constraint (iwopy.Constraint) – The constraint
varmap_int (dict, optional) – Mapping from objective variables to problem variables. Key: str or int, value: str or int
varmap_float (dict, optional) – Mapping from objective variables to problem variables. Key: str or int, value: str or int
verbosity (int) – The verbosity level, 0 = silent
- add_objective(objective, varmap_int=None, varmap_float=None, verbosity=0)
Add an objective to the problem.
- Parameters:
objective (iwopy.Objective) – The objective
varmap_int (dict, optional) – Mapping from objective variables to problem variables. Key: str or int, value: str or int
varmap_float (dict, optional) – Mapping from objective variables to problem variables. Key: str or int, value: str or int
verbosity (int) – The verbosity level, 0 = silent
- apply_individual(vars_int, vars_float)[source]
Apply new variables to the problem.
- Parameters:
vars_int (np.array) – The integer variable values, shape: (n_vars_int,)
vars_float (np.array) – The float variable values, shape: (n_vars_float,)
- Returns:
problem_results – The results of the variable application to the problem
- Return type:
Any
- apply_population(vars_int, vars_float)[source]
Apply new variables to the problem, for a whole population.
- Parameters:
vars_int (np.array) – The integer variable values, shape: (n_pop, n_vars_int)
vars_float (np.array) – The float variable values, shape: (n_pop, n_vars_float)
- Returns:
problem_results – The results of the variable application to the problem
- Return type:
Any
- calc_gradients(vars_int, vars_float, func, components, ivars, fvars, vrs, pop=False, verbosity=0)
The actual gradient calculation, not to be called directly (call get_gradients instead).
Can be overloaded in derived classes, the base class only considers analytic derivatives.
- Parameters:
vars_int (np.array) – The integer variable values, shape: (n_vars_int,)
vars_float (np.array) – The float variable values, shape: (n_vars_float,)
func (iwopy.core.OptFunctionList, optional) – The functions to be differentiated, or None for a list of all objectives and all constraints (in that order)
components (list of int, optional) – The function’s component selection, or None for all
ivars (list of int) – The indices of the function int variables in the problem
fvars (list of int) – The indices of the function float variables in the problem
vrs (list of int) – The function float variable indices wrt which the derivatives are to be calculated
pop (bool) – Flag for vectorizing calculations via population
verbosity (int) – The verbosity level, 0 = silent
- Returns:
gradients – The gradients of the functions, shape: (n_components, n_vrs)
- Return type:
- check_constraints_individual(constraint_values, verbosity=0)
Check if the constraints are fullfilled for the given individual.
- Parameters:
constraint_values (np.array) – The constraint values, shape: (n_components,)
verbosity (int) – The verbosity level, 0 = silent
- Returns:
values – The boolean result, shape: (n_components,)
- Return type:
np.array
- check_constraints_population(constraint_values, verbosity=0)
Check if the constraints are fullfilled for the given population.
- Parameters:
constraint_values (np.array) – The constraint values, shape: (n_pop, n_components)
verbosity (int) – The verbosity level, 0 = silent
- Returns:
values – The boolean result, shape: (n_pop, n_components)
- Return type:
np.array
- property constraints_tol
Gets the tolerance values of constraints
- Returns:
ctol – The constraint tolerance values, shape: (n_constraints,)
- Return type:
- evaluate_individual(vars_int, vars_float, ret_prob_res=False)[source]
Evaluate a single individual of the problem.
- Parameters:
vars_int (np.array) – The integer variable values, shape: (n_vars_int,)
vars_float (np.array) – The float variable values, shape: (n_vars_float,)
ret_prob_res (bool) – Flag for additionally returning of problem results
- Returns:
objs (np.array) – The objective function values, shape: (n_objectives,)
con (np.array) – The constraints values, shape: (n_constraints,)
prob_res (object, optional) – The problem results
- evaluate_population(vars_int, vars_float, ret_prob_res=False)[source]
Evaluate all individuals of a population.
- Parameters:
vars_int (np.array) – The integer variable values, shape: (n_pop, n_vars_int)
vars_float (np.array) – The float variable values, shape: (n_pop, n_vars_float)
ret_prob_res (bool) – Flag for additionally returning of problem results
- Returns:
objs (np.array) – The objective function values, shape: (n_pop, n_objectives)
cons (np.array) – The constraints values, shape: (n_pop, n_constraints)
prob_res (object, optional) – The problem results
- finalize(verbosity=0)
Finalize the object.
- Parameters:
verbosity (int) – The verbosity level, 0 = silent
- finalize_individual(vars_int, vars_float, verbosity=1)[source]
Finalization, given the champion data.
- Parameters:
vars_int (np.array) – The optimal integer variable values, shape: (n_vars_int,)
vars_float (np.array) – The optimal float variable values, shape: (n_vars_float,)
verbosity (int) – The verbosity level, 0 = silent
- Returns:
problem_results (Any) – The results of the variable application to the problem
objs (np.array) – The objective function values, shape: (n_objectives,)
cons (np.array) – The constraints values, shape: (n_constraints,)
- finalize_population(vars_int, vars_float, verbosity=0)[source]
Finalization, given the final population data.
- Parameters:
vars_int (np.array) – The integer variable values of the final generation, shape: (n_pop, n_vars_int)
vars_float (np.array) – The float variable values of the final generation, shape: (n_pop, n_vars_float)
verbosity (int) – The verbosity level, 0 = silent
- Returns:
problem_results (Any) – The results of the variable application to the problem
objs (np.array) – The final objective function values, shape: (n_pop, n_components)
cons (np.array) – The final constraint values, shape: (n_pop, n_constraints)
- get_gradients(vars_int, vars_float, func=None, components=None, vars=None, pop=False, verbosity=0)
Obtain gradients of a function that is linked to the problem.
The func object typically is a iwopy.core.OptFunctionList object that contains a selection of objectives and/or constraints that were previously added to this problem. By default all objectives and constraints (and all their components) are being considered, cf. class ProblemDefaultFunc.
- Parameters:
vars_int (np.array) – The integer variable values, shape: (n_vars_int,)
vars_float (np.array) – The float variable values, shape: (n_vars_float,)
func (iwopy.core.OptFunctionList, optional) – The functions to be differentiated, or None for a list of all objectives and all constraints (in that order)
components (list of int, optional) – The function’s component selection, or None for all
vars (list of int or str, optional) – The float variables wrt which the derivatives are to be calculated, or None for all
verbosity (int) – The verbosity level, 0 = silent
pop (bool) – Flag for vectorizing calculations via population
- Returns:
gradients – The gradients of the functions, shape: (n_components, n_vars)
- Return type:
- initial_values_float()
The initial values of the float variables.
- Returns:
values – Initial float values, shape: (n_vars_float,)
- Return type:
- initial_values_int()
The initial values of the integer variables.
- Returns:
values – Initial int values, shape: (n_vars_int,)
- Return type:
- initialize(verbosity=1)[source]
Initialize the problem.
- Parameters:
verbosity (int) – The verbosity level, 0 = silent
- property initialized
Flag for finished initialization
- Returns:
True if initialization has been done
- Return type:
- property max_values_constraints
Gets the maximal values of constraints
- Returns:
cma – The maximal constraint values, shape: (n_constraints,)
- Return type:
- max_values_float()
The maximal values of the float variables.
Use numpy.inf for unbounded.
- Returns:
values – Maximal float values, shape: (n_vars_float,)
- Return type:
- max_values_int()
The maximal values of the integer variables.
Use self.INT_INF for unbounded.
- Returns:
values – Maximal int values, shape: (n_vars_int,)
- Return type:
- property maximize_objs
Flags for objective maximization
- Returns:
maximize – Boolean flag for maximization of objective, shape: (n_objectives,)
- Return type:
- property min_values_constraints
Gets the minimal values of constraints
- Returns:
cmi – The minimal constraint values, shape: (n_constraints,)
- Return type:
- min_values_float()
The minimal values of the float variables.
Use -numpy.inf for unbounded.
- Returns:
values – Minimal float values, shape: (n_vars_float,)
- Return type:
- min_values_int()
The minimal values of the integer variables.
Use -self.INT_INF for unbounded.
- Returns:
values – Minimal int values, shape: (n_vars_int,)
- Return type:
- property n_constraints
The total number of constraints, i.e., the sum of all components
- Returns:
n_con – The total number of constraint functions
- Return type:
- property n_objectives
The total number of objectives, i.e., the sum of all components
- Returns:
n_obj – The total number of objective functions
- Return type:
- property n_vars_float
The number of float variables
- Returns:
n – The number of float variables
- Return type:
- property n_vars_int
The number of int variables
- Returns:
n – The number of int variables
- Return type:
- prob_res_einsum_individual(prob_res_list, coeffs)
Calculate the einsum of problem results
- Parameters:
prob_res_list (list) – The problem results
coeffs (numpy.ndarray) – The coefficients
- Returns:
prob_res – The weighted sum of problem results
- Return type:
- prob_res_einsum_population(prob_res_list, coeffs)
Calculate the einsum of problem results
- Parameters:
prob_res_list (list) – The problem results
coeffs (numpy.ndarray) – The coefficients
- Returns:
prob_res – The weighted sum of problem results
- Return type:
- var_names_float()
The names of float variables.